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Abstract 

 
In this paper, the particle swarm algorithm is applied to the 
analysis of nonlinearly loaded antennas and antenna arrays. 
In most cases, the particle swarm algorithm is utilized for 
optimization problem. However, the particle swarm algorithm 
is utilized in this study for analyzing a nonlinear 
electromagnetic problem, but not for optimization. Initially, 
the scattering of nonlinear loaded antennas is viewed as an 
equivalent microwave circuit with the circuit parameters 
representing the antenna structure, incident wave and 
nonlinear load. The analysis of this equivalent microwave 
circuit is then transformed into the optimization of a scalar 
fitness function to which the particle swarm algorithm can be 
applied. Numerical examples show that the results calculated 
in this study are consistent with those given by other existing 
studies. The analysis of such a nonlinear problem using the 
particle swarm algorithm is very straightforward and is found 
to be more efficient than other stochastic approaches. 
Therefore, it can also be applied to the analyses of many 
other nonlinear problems in electromagnetic waves.  
 
 

1. INTRODUCTION 
 

Nonlinearly loaded antennas mean that the input terminals 
of antennas are attached by nonlinear electronic devices to 
yield the desired scattering characteristics. There have been 
many studies for the analyses of a single nonlinearly loaded 
antenna element [1-9] and antenna arrays [10-13]. In general, 
the analysis for such a problem is difficult due to the addition 
of device nonlinearity to the inherently complicated antenna 
theory. This motivates us to develop a general and 
straightforward approach for solving this type of nonlinear 
problems. 

In this paper, analyses of nonlinearly loaded antennas are 
given using the particle swarm algorithm [14]. Initially, the 
analysis is replaced by solving the equivalent problem of a 
nonlinear microwave circuit with the circuit parameters 
representing the antenna structure, incident wave and 
nonlinear electronic device [10-13]. These equivalent circuit 
parameters representing the antenna structure and incident 
wave can be calculated by the moment method [15]. By 
applying Kirchhoff's circuit law, this equivalent circuit can be 
formulated into an optimization problem with a scalar fitness 

(or cost) function. This fitness function represents the sum of 
currents flowing outward at a specified node and thus should 
be close to zero finally. The particle swarm algorithm is then 
utilized to find a set of antenna terminal voltage at different 
harmonics that makes the fitness function as close to zero as 
possible. 

As the array structure is considered, the equivalent 
microwave circuit becomes a multi-port linear network with 
each port attached by a nonlinear electronic device [10-13]. It 
should be noted that the array mutual coupling effects are 
included in the multi-port linear network. The mutual 
coupling mechanisms within the array structure are given and 
interpreted in detail in [13]. The flow chart for analyzing the 
problem of such an array structure is very similar to that of 
the single element case except that the fitness function is 
properly modified.   

The particle swarm algorithm [14] has widespread 
applications in engineering. This is a new stochastic 
evolutionary computation technique based on the movement 
and intelligence from a swarm of particles. It has been shown 
in certain instances to outperform other stochastic methods of 
optimization like genetic algorithms [16]. The illustration of 
particle swarm algorithm and the related applications in 
electromagnetics were described in [17] in detail. Most of the 
applications are for optimizing, but not for analyzing 
nonlinear engineering problems. However, the particle swarm 
algorithm utilized in this study is for analyzing a nonlinear 
electromagnetic problem, but not for optimization. To our 
knowledge, this paper is the first study to apply the particle 
swarm algorithm to the analysis of such a nonlinear 
electromagnetic problem. Numerical examples show that the 
results calculated by the particle swarm algorithm are 
consistent with those of other existing studies. The analysis in 
this paper does not require a suitable guess of an initial 
solution and there exists no gradient operations in the 
iteration procedures. Therefore, it becomes very 
straightforward, and easy in formulation and programming. In 
addition, it is found to be more efficient than other stochastic 
approaches. 

In Section 2, the analysis of a single nonlinearly loaded 
antenna is investigated using the particle swarm algorithm. In 
Section 3, the analysis for single element case is extended to 
array structure. Numerical examples are illustrated in Section 
4. Finally, the conclusion is given in Section 5. 
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2. FORMULATIONS OF SINGLE ELEMENT 

 
Consider a single nonlinearly loaded antenna illuminated 

by a plane wave 
iE , as shown in Fig.1. Similar to the 

treatment in [3][7][10-13], the analysis becomes an equivalent 
microwave circuit problem, as shown in Fig.2. The goal is to 
find a terminal voltage sV  at different harmonic frequencies 
and all the scattering characteristics can be obtained through 

sV . In Fig.2, the eqI  is the short-circuit current at the antenna 

terminal due to the incident wave, the sNI  is the current of the 

nonlinear load, and Y  denotes the antenna input admittances 
at different harmonic frequencies. From Kirchhoff's circuit 
law, we have an error vector   
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The integer P in (2)-(5) denotes the number of harmonics. 
The variables in the above equations are defined from 
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 is the frequency of the incident wave and p denotes 

the corresponding harmonic. 
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where T  and D  are the related transformation matrices 
between time and frequency domain. From (1) and (10), we 
have 

0)( seqs VTfDIVY  (11)

where f( ) is the i-v characteristics of the nonlinear load, i.e., 
))(()( tvfti ssN

. (12)

The problem then becomes to find an optimum vector sV  in 
(11) that makes the error vector  approach zero.  

In this study, the particle swarm algorithm is used to find 
an optimum sV  that satisfies (11). The flow chart of the 
algorithm is shown in Fig.3 and each iteration step is 
described as below.  
 
Step-1. Determine solution dimension and range 

According to (2), the solution of sV  has dimension of 

DN = 2P+1. The range for these 
DN (=2P+1) variables of 

0,sV , 

1,sV ,…  and 
12, PsV  should be determined initially. 

 
Step-2. Determine number of particles 

Assume there are M particles in the iteration procedures, 
i.e., the population size is M. Each particle has its location 
and velocity with the vector dimension of 

DN = 2P+1. The 

location vector of each particle represents sV  in our problem, 
i.e., the solution we want to find. The velocity vector of each 
particle represents the magnitude and direction for the 
location variation in the next iteration step. Parametric studies 
have found that a population size less than 30 is suitable for 
many engineering problem, i.e., M 30. 
 
Step-3. Determine fitness function 

Based on (11), the fitness or cost function of the iteration 
procedure is defined as  

fitness = 2 =
2

)( seqs VTfDIVY . (13)

The goal is then to find an optimal set of sV  that makes the 
value of fitness in (13) minimum, i.e., positive and as close to 
0 as possible. 
 
Step-4. Determine initial locations and velocities of particles 

The initial location and velocity (both with 
DN =2P+1 

dimension) of all the M particles are given randomly. 
 
Step-5. Evaluate the value of fitness  

The value of fitness for each particle is evaluated by (13). 
 
Step-6. Record the best locations of particles 

For the m-th particle, its personal best location, i.e., the 
location of the m-th particle that produced minimum fitness 
during the current and past iteration loops, is recorded as 

mpbest . The global best location, i.e., the best location among 

mpbest , m=1, 2, , M, is recorded as gbest . In other words, 

gbest  is the best location that the M particles ever 

encountered. This best location produced the globally 
minimum fitness during the current and past iteration loops of 
all the M particles. 
 
Step-7. Update velocities and locations of particles 

According to [18], the velocity 
mv  and the location 

mx of 

the m-th particle are updated as 
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where t  is the time-setp and is usually chosen as 1 second, 
rand() is a random value in the interval of 0 to 1, and K is the 
constriction factor determined from  
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In this study, we choose 
1
=2.8 and 

2
=1.3 according to the 

suggestion of [19]. 
 
Step-8. Check if the stop condition is reached ? 

Go to Step-5 until the stop condition is reached. The stop 
condition usually means the maximum iteration loop or the 
minimum fitness threshold. In other words, the iteration will 
continue until the specified maximum loop or minimum 
fitness threshold is reached.   
 
 

3. FORMULATIONS OF ARRAY STRUCTURES 
 

Consider an N-element nonlinearly loaded antenna array 
illuminated by a plane wave 

iE , as shown in Fig.4. Similar to 

the treatment in [10-13], the equivalent circuit can be 
expressed as Fig.5, where port n represents the n-th antenna 
terminal. The mutual coupling effects are included in the 
linear network. The circuit equation is the same as (11) and 
the fitness function is the same as (13) except the definitions 
of the variables are modified as 
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where ijY  denotes the mutual admittances between the i-th 

and the j-th antenna elements at different harmonics. In (16), 
the subscripts of 

12,, pnsV  and 
pnsV 2,,
denote the cosine and sine 

components of terminal voltage for the n-th antenna at the p-
th harmonic. Similarly, subscripts in (17) and (18) also have 
the same meanings. After the fitness function of (13) is 
determined, the particle swarm algorithm can be used to find 
the optimum sV  of (16) that satisfies (11) or minimizes (13). 
The iteration procedures are the same as those given in 
Section 2. 
 

 
4. NUMERICAL SIMULATION 

 
In this section, numerical examples are given to illustrate 

the methods described above. Without loss of generality, the 
dipole antennas are considered for simplicity since there is no 
limitation on types of antennas in this study. In the following 
examples, the dipole antenna has length-to-diameter ratio of 
74.2. The incident plane wave in Fig.1 is assumed to be 

zeE kxtj
i ˆ)( , where k is the wave number. In other words, 

the incident wave has E-field direction parallel to the dipole 
and propagation direction perpendicular to the dipole. Each 
dipole antenna is loaded with a nonlinear load with the i-v 
characteristics f( ) given as 

34
75

1
)( vvvfi . (20)

The equivalent circuit parameters in Fig.2 are solved by the 
Pocklington’s equation and moment methods [15]. In the 
particle swarm algorithm, the number of particles is chosen to 
be M=20. The number of maximum iteration loops is set to be 
600.  

In the first example, a single nonlinearly loaded antenna is 
considered. Following the particle swarm algorithm based 
analysis in Section 2, the final antenna terminal voltage 
components for different dipole lengths at frequencies of 

0
, 

02  and 
03  are shown in Fig.6. For comparison, the results 

calculated from the harmonic balance technique [7,12] are 
also given. It shows that they are in good agreement. From 
this example, we are convinced that particle swarm algorithm 
gives accurate results in the problems of nonlinearly loaded 
antennas. 

In the second example, two parallel dipole antennas with 
each antenna loaded with a nonlinear load are considered. The 
nonlinear load is the same as that of the previous example. 
The dipole length is chosen to be 0.47 Following the 
particle swarm algorithm based analysis in Section 2 and 
formulations of array structures in Section 3, the final antenna 
terminal voltage components for different element spacing at 
frequencies of 

0
, 

02  and 
03  are shown in Fig.7. For 

comparison, the results calculated from the harmonic balance 
technique [12] are also given. It shows that they are in good 
agreement. It should be emphasized that the mutual coupling 
effects between antenna elements are included in the analysis. 

 
 

5. CONCLUSIONS 
 

In this paper, the particle swarm algorithm is applied to 
the analyses of nonlinearly loaded antennas and antenna 
arrays including array mutual coupling effects. The analyses 
of these structures can be transformed into an optimization 
problem with a scalar fitness function. This scalar fitness 
function should be positive and as close to 0 as possible. The 
final terminal voltages will be obtained as the scalar fitness 
function is minimized by the particle swarm algorithm. 
Numerical simulation shows that the results calculated from 
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the proposed methods in this study are consistent with those 
using the harmonic balance techniques. Since the particle 
swarm algorithm is inherently a stochastic optimization 
technique, it does not require a suitable guess of an initial 
solution and there exists no gradient operations in the 
iteration procedures. The utilization of the particle swarm 
algorithm in nonlinear problems of this type is very 
straightforward, and easy in both formulation and 
programming. Therefore, the proposed methods in this study 
can be extended to the analyses of many other nonlinear 
problems in electromagnetics. 
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Fig.1 Schematic diagram of a nonlinearly loaded antenna. 
 
 
 
 
 
 
 

 
 

Fig.2 The equivalent microwave circuit of Fig.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.3 The flow chart of the particle swarm algorithm.
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Fig.4 Schematic diagram of a finite nonlinearly loaded antenna array. 

 
 

 
 
 
 
 
 
 
 

 
Fig.5 The equivalent microwave circuit of Fig.4. 
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Fig.6 Magnitude of voltage at the input terminal of a single nonlinearly 

loaded dipole antenna for different dipole lengths at different harmonic 
frequencies of 

01 , 
02  and 

03  by using particle swarm algorithm 

and harmonic balance technique. 
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Fig.7 Magnitude of voltage at each input terminal of a nonlinearly loaded 

dipole antenna array with two parallel dipoles for different array 
element spacing at different harmonic frequencies of 

01 , 
02  and 

03  by using particle swarm algorithm and harmonic balance 

technique. 
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