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Abstract 

 
Finite-Difference Time-Domain (FDTD) method has been 
widely used  to study Photonic Bandgap (PBG) structures. 
However, staircasing approximation employed by Yee’s 
scheme for curved structures is noted to cause numerical 
errors when the wavelengths of interest are relative small 
with regard to the grid size. Consequently a high spatial 
resolution is required in the conventional Yee’s FDTD 
scheme. Nonorthogonal FDTD (NFDTD) method uses a 
conformal grid to discretize curved structures and hence 
requires less computer memory in the simulation. The trade-
off is the late time instability inherent in the NFDTD method. 
In this paper, the Yee’s algorithm and NFDTD are compared 
in modelling the photonic bandgap structures in terms of 
mesh sizes, numerical accuracy and the requirements on 
spatial resolution. 
 
 

1. INTRODUCTION 
  
Photonic Bandgap (PBG) structures which are also termed as 
Photonic Crystals or Electromagnetic Bandgap (EBG) 
structures are periodically structured artificial electromagnetic 
media. They generally possess band gaps, a range of 
frequency in which EM waves cannot propagate through the 
structure.  PBG studies have attracted wide attention in both 
physics and engineering societies [1,2].  
 
So far, PBG structures have been extensively studied using 
various numerical methods including the Plane Wave 
Expansion (PWE) method [3,4,5], the Finite-Difference 
Time-Domain (FDTD) method [6], the Korringa-Kohn-
Rostoker (KKR) or multiple scattering approach [7], the 
Transfer Matrix Method (TMM) [8,9] and the generalized 
Rayleigh Identity Method [10] etc. Among them, the FDTD 
method is most popular because of its simplicity in algorithm 
and capability to model complex structures with wide 
frequency band solutions. In previous FDTD approaches, an 
overwhelming majority is based on the Yee’s scheme [11-13], 
using uniform orthogonal meshes. There is also an alternative 
FDTD approach developed in the nonorthogonal coordinate 
system [15], in which the dispersion diagram is obtained 
using a uniform rhombic grid in order to model a rhombic 

unit cell. In that approach, the formulas are derived from the 
conventional Yee’s scheme with adjustments for the fixed 
skewed angle in the grid. However, when the curved unit cell 
element is considered, staircasing approximation is employed, 
either with an orthogonal grid [11-14] or with a rhombic grid 
[15]. It is anticipated that the staircasing approximation will 
cause numerical errors when the wavelength of interest is 
small with regard to the grid size. Consequently, a dense grid 
with high spatial resolution is required and hence leads to 
extensive computation with large computer memory 
requirement.  
 
On the other hand, the nonorthogonal FDTD (NFDTD) 
scheme originated by Holland in 1983 [16] uses structured 
meshes when modelling curved structures. Compared to the 
staircase FDTD scheme, fewer meshes are needed to 
represent the curved or oblique boundary of electromagnetic 
structures. However, it has been reported that the NFDTD 
scheme suffers the late time instability which is inherent in 
the algorithm [17].  
 
In this paper, an infinite structure of metallic cylinder rods 
loaded periodically in free space is modelled in terms of unit 
cells using both the Yee’s FDTD and NFDTD algorithms. 
Dispersion diagrams of the PBG structure are plotted and 
compared using the two aforementioned algorithms in terms 
of numerical accuracy on frequency results and its 
requirements on the spatial resolution. 
 
 

2. NUMERICAL SIMULATION 
 

A. Model Parameter 
 
Two types of unit cell namely square and triangular/rhombic 
lattice are considered in this paper in both TE and TM 
polarization respectively. The unit cell element is a metallic 
rod with the ratio of the radius (r) to the lattice constant (a) 
(r/a) 0.2. Fig.1 shows an example of triangular lattice meshed 
using 30×26 cells in the Yee’s FDTD grid and 18×15 cells in 
the NFDTD grid.  
 
The structures are fed with a modulated Gaussian pulse at a 
random feeding point with different normalized central 
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frequencies in various numerical experiments. The EM fields 
at random points are monitored and the temporal results are 
processed by Fourier Transformation. Dispersion diagrams of 
the modelled PBG structures are validated using results in 
[18]. Dispersion diagrams from the Yee’s and NFDTD 
algorithms with different mesh sizes (spatial resolution) are 
compared to evaluate the performance of the two algorithms. 
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(a)                                              (b)     

Fig. 1 Mesh Schemes for a triangular/rhombic unit cell of the metallic PBG 
structures.  (a) in FDTD grid;      (b) in NFDTD grid; 

 

B. Comparison of the Dispersion Diagrams 
 
In Fig.2, the dispersion diagrams of the TE modes for the 
triangular/rhombic lattice feeding at normalized frequency 
equals to 1 from the Yee’s and the NFDTD algorithms are 
shown as an example. It is observed that for this frequency 
band (normalized central frequency equals to 1), the Yee’s 
FDTD results are convergent when a grid with 30 cells or 
more per wavelength is used. It is noticed that a grid with 18 
cells per wavelength can not result in the same diagram due to 
the inadequate spatial resolution. However, using the NFDTD 
algorithm, a grid of 18 cells per wavelength can give the same 
accuracy as that from the staircasing FDTD with higher 
spatial resolutions.  
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Fig. 2 The comparison of the dispersion diagrams from Yee's and NFDTD 
algorithms.  Dots: Yee’s FDTD; Triangles: NFDTD. 

 

The same PBG structure is excited with a higher normalized 
frequency which equals to 2 to investigate the high frequency 
performance of the two algorithms. For this frequency, a 
spatial resolution of 15 cells per wavelength is not enough for 
the Yee’s algorithm while the NFDTD with a resolution of 9 
cells per wavelength demonstrate a maximum error of 1.4% 
below normalized frequency 1.5 and an error of 2.4% in the 
frequency band of 1.5-2.5.  As is the same in the conventional 
Yee’s FDTD algorithm, a denser NFDTD grid can offer even 
better accuracy than a coarse one. The dispersion diagrams of 
the TE modes for the triangular/rhombic lattice from Yee’s 
algorithm (40 cells per wavelength, mesh size: 80×69) and 
NFDTD algorithm (15 cells per wavelength, mesh size: 
30×26) are plotted and compared in Fig. 3. They show good 
agreement up to normalized frequency 3.  
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Fig. 3 The dispersion diagrams of the triangular/rhombic lattice (TE modes) 
from the Yee’s and NFDTD algorithm with normalized feeding frequency of 
2. Dots: Yee’s FDTD, mesh size 80×69, 40 cells per wavelength; Square: , 
mesh size 30×26, 15 cells per wavelength. 

 
Further numerical experiments with higher feeding frequency 
also show that using the conventional Yee’s FDTD algorithm, 
a denser grid is required compared with the NFDTD 
algorithm to get the same level of accuracy in any frequency 
band.  
 

C. Requirement on Spatial Resolution 
 
Figure 4 is to compare the NFDTD results for different spatial 
resolution for a high feeding frequency. In this way the error 
rate on a coarse mesh is investigated. The normalized feeding 
frequency is chosen as 3, which means  

3
2 ff

f a
c
aw  

in which wf is the feeding frequency, a is the lattice constant, 
c is the speed of light in free space, and ff  is the wavelength 
of the feeding frequency in free space. So for this frequency, 
the grid size is 

6
ff for mesh size 18×15 (6 cells per 
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wavelength) and 
16

ff  for mesh size 48×42 (16 cells per 

wavelength). More details with other spatial resolutions can 
be checked in table 1.  
 
The diagram from mesh size 48×42 (16 NFDTD cells per 
wavelength for the central frequency) is taken as a reference 
because of its higher spatial resolution. The difference of the 
two results is under 0.92% from normalized frequency band 0 
to 1.5; under 2.13% from normalized frequency 1.5 to 2 and 
under 5.5% for normalized frequency 2 to 3. 
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Fig. 4 Comparison of dispersion diagrams for different NFDTD spatial 
resolution for normalized feeding frequency of 3.  Dots: mesh size 48×42 (16 
cells per wavelength); Square: mesh size 18×15 (6 cells per wavelength). 

 
TABLE  1: CAPABILITY OF  THE YEE’S FDTD AND NFDTD ALGORITHMS 

UNDER DIFFERENT SPATIAL RESOLUTIONS 
Normalized frequency (a/ ff) Mesh Size 

1 2 3 
26×23 

(Yee’s FDTD) 
 /  

18×15 (NFDTD) 

 
NFDTD 

(
18

ff ) 

 
NFDTD 

(
9
ff ) 

 
NFDTD 

(
6
ff ) 

 
 

30×26 

Yee’s 
/NFDTD  

(
30

ff ) 

NFDTD 
 

(
15

ff ) 

NFDTD 
 

(
10

ff ) 

 
50× 43 

(Yee’s FDTD) 
 /  

48×42 (NFDTD) 

Yee’s 

(
50

ff  ) 

/ 
NFDTD 

(
48

ff ) 

Yee’s 

(
25

ff ) 

/ 
NFDTD 

(
24

ff ) 

 
 
NFDTD 

(
16

ff ) 

 
Table 1 shows the capability of the two algorithms under 
different spatial resolutions to get results with minor (less 
than 6%) errors. The contents of the table show the capable 
algorithm(s) followed by the grid size in brackets. It shows 

that the NFDTD grid can be 4 times bigger as that of the 
Yee’s scheme to achieve a similar performance.  
 

D. Lower Unexpected Modes from a Coarse Yee’s Grid 
 
Figure 5 shows what happens when the spatial resolution is 
not enough in both Yee’s FDTD algorithm and NFDTD 
algorithm. Frequency spectra of  are calculated using Yee’s 
FDTD with meshes of 15 cells per wavelength (size 30×26) 
and NFDTD with meshes of 6 cells per wavelength (size 
18×15) respectively and are compared with the Yee’s FDTD 
with meshes 40 cells per wavelength (size 80×69). Both the 
low spatial resolution results show errors on higher frequency 
band (higher than 1.8). However, in the Yee’s FDTD spectra, 
there are unexpected modes in lower frequency band (lower 
than 0.5) for this model. This is not seen in NFDTD results 
with an even lower spatial resolution.  
 
The unexpected lower modes observed in the Yee’s coarse 
grid model for the metallic cylindrical rod can be explained as 
such: some modes are degenerated and others are spurious 
modes, all of which are caused by numerical inaccuracy when 
the circle structure is meshed using a staircasing grid. 
 
This comparison, again, verifies that NFDTD algorithm can 
provide more reliable results at lower frequency band with a 
very low spatial resolution because of its capability of model 
curved structure more accurately in a conformal way. This is 
beneficial not only in terms of computer memory 
requirement, but also in providing a more robust algorithm 
which delivers accurate results when knowledge of the 
maximum frequency involved is inadequate and when 
modelling some complex problems. 
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Fig. 5 Frequency Spectra for the same k vector from the Yee’s FDTD and 
NFDTD algorithms under low spatial resolution.  
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3. CONCLUSION 
 
In this paper, dispersion diagrams of a two-dimensional PBG 
structure of metallic cylinder rods periodically loaded in free 
space are obtained using both the conventional Yee’s and the 
NFDTD algorithms. The triangular/rhombic lattice and TE 
polarisation is chosen for demonstrating the comparison. 
Similar results are observed for TM polarisation and for 
square lattice which are not shown here. The comparison of 
the frequency results shows that Yee’s FDTD algorithm 
requires a higher spatial resolution (minimum 25 cells per 
wavelength) to reduce the inaccuracy in modelling and the 
numerical dispersion caused by staircasing approximation, 
while NFDTD is able to model the curved structure more 
accurately with a much lower spatial resolution (minimum 6 
cells per wavelength). For this set of experiments, the 
NFDTD grid can be 4 times bigger as that of the Yee’s 
scheme to achieve similar numerical accuracy. Consequently, 
the requirement on the computer memory is alleviated when 
using the NFDTD scheme. At the same time, when the spatial 
resolutions are low in both algorithms, a coarse NFDTD grid 
can provide reasonable accurate results. This is beneficial in 
providing a more robust algorithm which delivers reliable 
results when knowledge of the maximum frequency involved 
is inadequate and when modelling some complex problems. 
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