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Abstract 

 
The conventional Lagrange interpolation scheme, which has 
demonstrated a very high efficiency in approximating the 
quasi-static Greens’ functions, is not very effective for 
interpolating full-wave Green’s functions due to their highly 
oscillatory characteristics of the phase term. To alleviate this 
difficulty, we propose a new full-wave interpolation scheme in 
which a well-designed phase compensation technique is 
employed. Applying this technique in 2-D non-uniform 
Lagrange interpolations, we can approximate the Green’s 
functions in an area of 100  with an accuracy of 10-3, 
using only 90  Chebyshev interpolation points. The 
proposed scheme can be adopted to build a fast solver for 
full-wave electromagnetic simulations. 
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1. INTRODUCTION 

 
Because of their simplicity and efficiency, interpolation 

schemes enjoy an increasing popularity in Computational 
Electromagnetics (CEM).  For instance, in the Finite-Element 
Method (FEM) and Method of Moments (MoM), higher-order 
interpolatory basis functions are respectively used in 
discretizing the differential and integral equations for 
obtaining a higher accuracy with less number of unknowns 
[1]; in the Multilevel Fast Multipole Algorithm (MLFMA), 
the interpolation is used in the spectral domain [2]; in the 
Precorrected-FFT Method [3], [4] and Multilevel Green’s 
Function Interpolation Method (MLGFIM) [5], interpolation 
schemes are adopted to approximate the spatial Green’s 
functions. In MLGFIM, combining with the multilevel 
discretization and using the conventional uniform Tartan grid, 
the Lagrange interpolation is applied to approximate the 
Green’s functions, obtaining an complexity. The 

theoretical derivations and numerical experiments in [5] 
sufficiently demonstrated that this approach is highly efficient 
for solving quasi-static problems. To interpolate the Green’s 
function in a cube generated by a point that is one cube away 
from this cube, only 3 3 3 Tartan grid points are 
needed.  Theoretically, the interpolation scheme can be used 

for approximating any kind of Green’s functions, and 
therefore MLGFIM can be used for solving any kind of 
integral equation problems. However, due to the highly-
oscillatory nature of the phase term of the Green’s functions 
in full-wave electromagnetic problems, to approximate the 
Green’s function in a cube that is greater than one wavelength 
(1 ) in edge size, the number of Lagrange interpolation points 
should be increased [6].  Following the increase of the 
electrical size of the cube, the number of interpolation points 
drastically increases to ensure a preset accuracy. This will 
greatly affect the interpolation efficiency of MLGFIM. To 
overcome this difficulty, here we introduce a simple but 
effective phase compensation (PC) scheme, in which the 
rapidly oscillating phase term of the Green’s function is 
compensated by a corrected phase and thus the oscillating 
feature is dramatically reduced. Numerical experiments 
demonstrated that for approximating Green’s function values 
in a 10

( )O N

27

0 100  2 area with an accuracy of 310 , only 90 90  
interpolation points are needed. If we use the conventional 
Lagrange interpolation without phase compensation, in a 32 
bit computer using double precision, the interpolation will 
diverge when the edge size of the square is greater than 8 .  
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Fig. 1: The numerical experiment sketch.  

 
2. CONVENTIONAL GREEN’S FUNCTION INTERPOLATION 

 
Fig. 1 illustrates the numerical experiment that was 

performed repeatedly in this paper. The shadowed square 
with an edge length L  is filled with field points. Assuming 
that there are interpolation points along one direction in 
this square and the source point is one L  length away from 
this square, the conventional Green’s function interpolation 
can be written as 
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                             (a)                                                         (b) 

Fig. 2: Interpolation points. (a) Uniformly spaced grids and (b)                  
Chebyshev grids. 
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Fig. 3: Average relative error versus the number of interpolation points in 

one direction using the conventional Lagrange interpolation. 
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where the total number of interpolation points K , the 
 interpolation point , the orthonormal 

Lagrange basis  

thi i p q

( ) ( , , ) ( , , )i L p x L q yr , and ( )L  is the 

one dimensional Lagrange basis function and expressed as 
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Here we use two kinds of interpolation points, viz., uniformly 
spaced grid and Chebyshev grid as depicted in Figs. 2a and 2b, 
respectively. The grid points of the former can be expressed 
as 

( 1) /( 1)st s L ,                          (3) 

and the latter as 
(2 1)

1 cos cos
2 22s

L s
t .                (4) 

Fig. 3 shows the average relative error of the conventional 
Green’s function interpolation. We observe that: 1) the 
interpolation efficiency is low, for instance, for 4L , 20 
Chebyshev interpolation points along one direction is needed 
to ensure the accuracy of 10-3; 2) in these conventional 
Lagrange interpolations, using Chebyshev interpolation grids 
will enhance the accuracy but not significantly; 3) when L = 8 

, the conventional Lagrange interpolation using uniformly 
spaced grids diverges.  

To alleviate these difficulties, we develop a simple but 
efficient phase compensation scheme, which is shown in next 
section. 
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Fig. 4: The Green’s function interpolation problem appeared in MLGFIM. 

 
 

3. PHASE COMPENSATION FOR GREEN’S FUNCTION 

INTERPOLATION 
 

Let’s consider the Green’s function interpolation 
problem appeared in MLGFIM in Fig. 4. The source point r  
is in square n  centred at , while the field point r  is in 

square centred at . To interpolate 
nr

m mr ( , ) exp( ) /G ikR Rr r  

(where R r r ) in square m , one can use (1). However, 

here we adopt the following steps instead. First, the Green’s 
function is rewritten as 

exp( )
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In (5),  
exp( )

( , ) exp( ( ))mn

ik
G ik

r r
r r k r r
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,       (6) 

where ( ) /mn m n m nk r r r r .  in (5) and (6) can be 

viewed as the phase corrected Green’s function. Consequently, 
instead of interpolating the original Green’s function, we now 
interpolate the phase corrected one.  Thus (1) can be rewritten 
as 

( , )G r r

1
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To see if (7) is more efficient than (1), we should study (6), 
which is rewritten as 
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Fig. 5: The average relative errors versus for various L using phase 
compensation with uniform grid points. 

 
 

where  is the angle between  and . Through this 

phase correction, we expect that the phase-corrected Green’s 
function will oscillate more slowly than the original one. 
From Fig. 4, we can see that and 

mnk r r

max 45

max1 cos 1 cos 0.293 , implying that the phase term of 

 is about three times smaller than that of G . If the source 
point , then and 1
G

Sr 1tan (1/ 2)s 106.0cos S
, 

which means that about 90% of the phase variation is 
eliminated. For the case that the source square n  is shifted to 
the upper right of Fig. 4, the maximum angle 

max max
. 

Thus, study of the un-shifted case is sufficient. Clearly, with 
the same accuracy, interpolating G  needs much less number 
of interpolation points than to interpolate G .  We call this the 
phase compensation scheme in Green’s function interpolation.    

 
Because in (7) the remainder part exp( ( ))mnikk r r  

can be easily expressed as the multiplication between the 
function of the field point and that of the source point, thus, 
the phase compensation scheme can be used to develop fast 
algorithms for full-wave electromagnetic simulations.  
 
 

4. NUMERICAL RESULTS 
 

To confirm arguments discussed in Section 3, we repeat 
the experiment shown in Fig. 1. (This can also be viewed as 
the Green’s function in square m  generated by  as shown 
in Fig. 4).  Fig. 5 shows the average relative errors versus 

for various 

S

L with and without phase compensation. We 
can see that the interpolation efficiency is significantly 
enhanced with phase compensation. When L=4 , adopting 
phase compensation, only 12 interpolation points are needed 
in one linear direction to achieve the accuracy of 10-3. 
Without the compensation, more than 20 interpolation points 
are needed. When L increases to 8 , 20 interpolation points 
are used with phase compensation. Without it, the results 
diverge due to the finite machine precision. 
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Fig. 6: The average relative errors versus for various L  ( 8 ) using 
phase compensation with Chebyshev interpolation points. 
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Fig. 7: The average relative errors versus for various L  ( ) using 
phase compensation with Chebyshev interpolation points. 
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To further enhance the interpolation efficiency, we also 

try non-uniform interpolation points, i.e., Chebyshev 
interpolation points.  

 
Fig. 6 shows the results for cases that L  is less than or 

equal to 8 . In this figure, interpolations with phase 
compensation again obtain a higher accuracy than that 
without it. We also see that applying non-uniform Chebyshev 
interpolation points, the interpolation efficiency is enhanced 
when compared with the results in Fig. 5 in which uniformly 
spaced interpolation points were used. For instance, only 14 
Chebyshev interpolation points are needed as opposed to 20 
uniformly spaced points to ensure the 10-3 accuracy.  

 
Fig. 7 shows the average relative errors of phase 

compensation interpolation with Chebyshev interpolation 
points versus when L  is greater than or equal to 16 .  We 
can see that for a square with an edge size 100 , only 90 
interpolation points per linear direction are needed to achieve 
the accuracy of 10-3.  This soundly demonstrates the efficacy 
of the proposed phase compensation scheme for Green’s 
function interpolation.  
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