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Abstract 

Due to unconditional stability of ADI-FDTD, it is becoming 
popular. In this paper progress of the ADI-FDTD method is 
given. First of all to get the advantages of both ADI-FDTD 
and FDTD methods a hybrid method is briefly explained. 
Then to reduce the error of the ADI-FDTD method at larger 
time steps error reduced ADI-FDTD is presented. To control 
the dispersion of the conventional ADI-FDTD method at 
higher time steps dispersion optimized ADI-FDTD method 
with different combinations for optimization is given.  
 

I Introduction 

With the development of more complicated structures in the 
field of electrical engineering, the importance of the 
computational electromagnetics increases. With 
computational electromagnetics, a designer can know what 
happens inside circuit structures, namely, which components 
or elements radiate and how signals travel and reflect. For 
microwave frequencies and wide band system applications, 
time-domain methods are increasingly preferred of their 
capability in handling wide band signals. Among time domain 
methods, the FDTD (Finite Difference Time Domain) method 
[1] has attracted more attention due to its simplicity and direct 
applicability to Maxwell’s equations. It has been used in a 
large number of applications, and FDTD based software has 
been developed commercially. Nevertheless, due to CFL 
(Courant-Friedrich-Levy) stability constraint and numerical 
dispersion error, it takes large memory and simulation time 
for electrically large and high Q structures. To circumvent the 
problems, many improved FDTD methods have been 
developed. For instance, to make FDTD method memory 
efficient, PSTD (Pseudospectral Time Domain) method [2] 
was proposed, and to reduce its dispersive error MRTD 
(Multiresolution Time Domain) method [3] was developed. 
To remove the CFL constraint, unconditionally stable ADI-
FDTD (Alternating Direction Implicit FDTD) method [4-5] 
was introduced recently, although it takes more memory and 
is more dispersive at larger time steps.  
To get the advantages and improve the efficiencies of both 
FDTD and ADI-FDTD methods, a hybrid FDTD and ADI-
FDTD method is discussed in section II. The ADI-FDTD 
method has higher error at higher time steps, to reduce it in 
section III two different error-reduced ADI-FDTD methods 
are presented. These error-reduced methods are based on the  
more accurate Crank Nicolson (CN) method but the 
simulation procedure is like the ADI-FDTD method. 

 
To reduce the dispersion of the ADI-FDTD method at higher 
time steps, in section IV, dispersion improvement for the  
ADI-FDTD method is discussed, in section V numerical 
results and at the end conclusions are given. 
 

II Hybrid FDTD/ADI-FDTD method 
 
In FDTD the problem of large memory and long CPU time 
arises when a structure that contains electrically small 
geometric features, including sharp conducting edges, is 
modeled. To have the highest possible computational 
efficiency, efficient techniques have been proposed that 
incorporate a priori knowledge of the field behaviors near 
these fine structures into the FDTD algorithms with little 
increase of computational expenditures [6]. However, they 
require the field behaviors to be known and analytical 
processing to be done beforehand. Alternatively, the so-called 
subgridding schemes [7] can be used. In these subgridding 
schemes, fine numerical grids or meshes are applied to fine 
geometric features where strong field variations occur. In the 
rest of the solution domain, coarse grids or meshes are still 
used in order to minimize the memory usage. A scheme is 
required to interface the fine grid and the coarse grid, both in 
space and in time, since the fine grids possess different spatial 
and temporal properties and conditions.    
In the subgridding scheme based purely on the conventional 
FDTD, one of the critical issues is to interface the two grids 
in time. In a fine grid, the time step has to be small, as 
stipulated by the CFL condition due to the fine grid cell size. 
However, in the coarse grid, the time step can be much larger. 
The result is that the two grids are simulated with two 
different time steps, or they simply are not synchronized. 
Consequently, a very carefully designed scheme is needed to 
interface the two grids, not only in space, but also in time 
where they are joined. Past experience has proven that unless 
the small time step for the fine grid is also applied to the 
coarse grid, an interfacing scheme often leads to instability or 
an overly complicated technique, which may still have a late-
time stability problem [8].     
To make FDTD more efficient, hybrid schemes have been 
proposed in the past. Those were aimed at taking advantage 
of the methods that are efficient with different conditions. For 
instance, the FDTD method has been interfaced with many 
other methods such as TLM that has less numerical dispersion 
and MoM that is effective for modeling open regions [9-10]. 
To save memory and computation time, we proposed a hybrid 
FDTD and ADI-FDTD technique. The details can be found in 
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[11-13]. In it, the ADI-FDTD is applied to fine mesh and the 
FDTD to coarse mesh. A subgridding interface is then 
developed and the associated interpolation is applied in space 
domain only. This technique is efficient for the applications in 
which there is need of fine subgrids. It leads to savings in 
memory and computation time.  
The reason to make the hybrid FDTD and ADI-FDTD is that, 
for applications where fine meshes are applied, the FDTD 
method requires long simulation time due to the small time 
step stipulated by the FDTD inherent CFL stability condition. 
To tackle this problem, the unconditionally stable ADI-FDTD 
method can be applied since it does not have the CFL stability 
condition. However, the ADI-FDTD normally requires more 
memory than the FDTD method. Therefore, it will be 
efficient not to apply the ADI-FDTD but the FDTD to 
wherever fine meshes are not needed. This leads to a 
subgridding scheme where an interfacing algorithm is needed 
to connect the FDTD-applied coarse mesh and the ADI-
FDTD-applied fine mesh. In such a way, advantages of both 
FDTD and ADI-FDTD methods are utilized and the usage of 
the computation resources are optimized. 

 The Hybrid Method Interfacing  

For hybrid method with a general cell ratio of m , the 
intermediate points at interface can be easily found with: 
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m
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H
m
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h ||                    (1) 

 
where ,1,...,2,1 mlhl  ,  are the field values to be 

interpolated in between points A and B. It should be pointed 
out here that the relatively large time-step applied in the dense 
grid will not cause unacceptable numerical dispersion errors 
as long as the time step does not cause unacceptable errors in 
the coarse grid. This occurs because the ADI-FDTD and 
FDTD present similar dispersion errors if their time and 
spatial step sizes are comparable. In our case, the ADI-FDTD 
actually has a smaller grid size than the FDTD. Therefore, the 
numerical dispersion error in the dense grid should not be 
larger than the coarse grid.   

 
III Error Reduced ADI-FDTD Methods 

 
 Unconditionally stable ADI-FDTD and Crank-Nicolson (CN) 
FDTD methods have been proposed recently [4-5][16]. Due 
to their unconditional stability, both methods have attracted 
much attention in recent years. It has been found that 
although the ADI-FDTD is computationally efficient, but it 
has large errors with large time steps. Such a property 
compromises the uses of the ADI-FDTD method with its 
unconditional stability. On the other hand, the CN-FDTD 
method is of much high accuracy, even with large time steps, 
but at the cost of much larger computational time [17]. 
Therefore, it will be desirable to develop a method that has 
the advantages of both methods. 
In fact, further studies on the ADI-FDTD and the CN-FDTD 

methods have shown that the ADI-FDTD method can be 
considered as the perturbed form of the CN method with the 
so-called splitting error term [16]. Based on it, an iterative 
method that solves the CN- FDTD method in an ADI-FDTD 
fashion was reported [18]. It embodies a loop of iterations at 
each FDTD marching time step. Consequently, it achieved 
much higher accuracy than that of the ADI-FDTD at the cost 
of more computation time. In this section, two novel ADI-
FDTD methods are proposed that are based on the CN-FDTD 
formulation but with the same computational efficiency as 
that of the conventional ADI-FDTD. Although the achieved 
accuracy may not be as high as that with the CN-FDTD 
method, it is sufficient for most of the large time step 
simulations without increasing computation expenditures. We 
name the methods as the error-reduced (ER) ADI-FDTD 
methods.  Further detail can be found in [19] 

Formulations of the 2-D ER-ADI-FDTD 

Method #1 
                                   
For this method, the two ADI-FDTD steps are computed as: 
 
Step 1 

)(]][[
4

)][
2

][()][
2

][( 2

12
2

1
n

nn
n

UUBA
t

UB
t

IUA
t

I  

and  
 Step 2 

)(]][[
4

)][
2

][()][
2

][( 2

12
2

1
1 n

nn
n UUBA

t
UA

t
IUB

t
I                

 
Method #2 
 
In this method, following two-steps are computed: 
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The equations above are different from the conventional ADI-
FDTD formulations [4-5] in the addition of terms on the 
right-hand sides that are proportional to the square of the time 
step [16]. The terms are related to the truncation errors and 
the additions of these in the computations are therefore 
expected to reduce the errors.  
 

IV  Dispersion Optimized ADI-FDTD Method 
 
ADI-FDTD faces the problem of larger dispersion error with 
bigger time steps. To get the real advantage of this 
unconditional stability, efforts have been put into controlling 
this dispersion problem [20-22]. In [20], dispersion reduction 
is presented for the two-dimensional case. In [21], higher 
order ADI-FDTD is introduced to reduce the dispersion but at 
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the cost of simulation time and memory.  In the previous 
section, error-reduced terms are added into the existing ADI-
FDTD method to get the better results but instability 
problems still exist for the three-dimensional cases. In [22], 
improvement in dispersion is presented for the 2D ADI-
FDTD method by introducing artificial anisotropy.  
Similar to the FDTD method, the dispersion of the ADI-
FDTD method is an inherent feature of the algorithm, which 
affects the overall accuracy. To circumvent this problem, 
reduction in cell sizes are needed and, as a result, increase the 
computation load. Here, novel ways to minimize the 
numerical dispersion of the ADI-FDTD method are presented. 
In them, additional controlling parameters are introduced to 
reduce the dispersion error. These dispersion-optimized ADI-
FDTD (DO-ADI-FDTD) methods improve accuracy in 
comparison with the original ADI-FDTD method, without 
additional computational complexity and loads.  

 
V Numerical Results 

 
In this section numerical results of the above-described 
methods are given. 
 
A  Hybrid method 
 
For this method only two applications are presented for 
explanation. The hybrid scheme described above was applied 
first to a two-dimensional finned waveguide. Since this 
structure was also solved in [14] with the other techniques, 
comparisons and validations of the proposed scheme can be 
made. The finned waveguide computed in our study has 
dimensions a = 2b = 64mm. The crossectional view of it is 
shown in Fig.1. Only one-quarter of the waveguide needs to 
be modeled (as shown in Fig 2) due to symmetry of structure, 
where M and E represent magnetic and electric wall 
respectively. The fin length considered was equal to b/4. 
Because of the expected rapid changes of the fields around 
the fin, a dense mesh is applied in the vicinity of the fin. As 
described earlier the ADI-FDTD is applied in the fine grid 
region and the conventional FDTD is applied in the coarse 
grid region.  

Three different cell sizes ,5.// mmlyx  

mm25.0 ,and mm125.0  were computed. For reference 
purposes, a separate pure FDTD simulation was also run with 
a uniform grid whose cell size was equal to the dense grid cell 
size of the hybrid method. The reason for taking a uniformly 
fine FDTD grid is that the FDTD can achieve a level of 
accuracy similar to that of the proposed method as shown in 
Tables. The comparison made under such a condition can 
then be deemed fair. Tables 1 and 2 also show the computer 
resources used by the proposed hybrid method and FDTD 
method respectively for comparison purpose. In both cases, 
the computer used is a Dell XPS T600 with 600 MHz CPU 
and 256MB of RAM. From tables it is also clear that for both 
methods, the smaller the cell size, the more accurate the 
results. The difference of normalized cut-off frequency of 
both methods decreases with the reduction in cell size and  

 
Fig. 1 Cross section of the finned waveguide 

 
 

Fig. 2 One quarter of finned waveguide 
 
both methods converge to produce the same solution, as the 
cell size tends to zero.   
 
Table 1 Computer resources used by the hybrid method for the finned 

waveguide 

Size of 
fine mesh 
cell 

Normalized 
cut-off 
frequency 
obtained 

Time for 
simulation 
(Seconds) 

Memory used 
by program 

.5mm 0.2241 2 632K 

.25mm 0.2263 13 708K 

.125mm 0.2271 99 992K 

 
Table 2 Computer resources used by the conventional FDTD for the finned 

waveguide. 

Size of 
fine mesh 
cell 

Normalized 
cut-off 
frequency 
obtained 

Time for 
simulation 
(Seconds) 

Memory used 
by program 

.5mm 0.2249 3 688K 

.25mm 0.2267 20 936K 

.125mm 0.2273 313 1912K 
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The second application considered was 3 dimensional planar 
microstrip structure with dimensions 20.32 x 5.565 x 33.864 
mm, strip width 0.784mm and distance between strip and 
ground plate is 2.413mm. Its crossectional view is shown in 
Fig. 3.  
In this case the cell ratio used for the coarse and fine mesh is 
1:2; for the pure FDTD case, the whole domain was modeled 
with fine mesh. To terminate open solution domains, the 
convolutional perfectly matched layer (CPML) [15] was 
implemented. Time used by the hybrid method and FDTD 
method is 553 and 1227 seconds respectively. 
The effective dielectric constant used for this structure is 
shown in Fig.4. It can be observed that there is a very good 
agreement between the proposed hybrid method and the 
FDTD method. In all, it is concluded that the proposed hybrid 
method is effective and efficient for numerical subgridding. 
 

 
Fig. 3  Cross sectional view of   microstrip line 

 
   
  Fig.4   Effective dielectric constant vs. frequency for the microstrip line 
 
B  Error Reduced ADI-FDTD method  
 
In this subsection, proposed Method # 1 and Method # 2 are 
simulated, and their results are compared with the 
conventional ADI-FDTD and FDTD methods. A structure of 
two parallel plates of zero thickness in free space was 

considered and studied. The plates were 2 m long and have a 
distance of 0.2 m in between them. To truncate the 
surrounding environment for simulation purpose, Perfect 
Magnetic Wall (PMW) was used on all four sides. Cell size 
considered for both methods in each direction was 0.2 meter. 
The raised cosine waveform with frequency 750 kHz was 
used as a source. Fig. 5 shows the computed electric field yE  

along the x axis with different CFL factor “s” which is the 
ratio of time step to the CFL limit. It can be observed from 
this figure that for 15s  results with the Method # 1 are 
approximately the same as those with the conventional ADI-
FDTD method at 5.0s , while the results with Method # 2 
are similar but have much larger errors. As can be seen, all 
the methods have similar errors at 0.5s . Simulation time 
for both methods was same as for the conventional ADI-
FDTD method with minor increment in memory for proposed 
methods. The memories used with three methods are 
1.336MB (with the conventional ADI-FDTD), 1.344 MB 
(with Method #1) and 1.344 MB (with Method #2). The 
proposed two methods used slightly more memory but 
insignificantly. 
Three dimensional error reduced ADI-FDTD method was 
found to be unstable to-date, Efforts are continued to find 
some ways to make 3-D ER-ADI-FDTD methods stable, so 
that the efficiency of the method can be better than the 
conventional ADI-FDTD method and faster than the CN 
method in 3D case.  
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Fig. 5 Electric field Ey for FDTD, ADI-FDTD and proposed methods 
  
C  3-D Dispersion Optimized -ADI-FDTD 
 
The dispersion equation for 3-D dispersion optimized ADI-
FDTD method is: 
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where xk , yk and zk are wavenumbers in x, y and z directions 

respectively. In the three-dimensional case, three controlling 
parameters A, B and C are introduced.  Different 
combinations of A, B and C will lead to different dispersion 
characteristics. In the following, four combinations are 
considered. 
In combination 1, 

tyk

tkcy
A

2
1

sin

2

1
tan ,

txk

tkcx
B

2
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sin

2

1
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tzk
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C

2
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In this combination, the setting is used to see the dispersion 
characteristics when optimization is made in all three 

directions (x, y and z). A is obtained by setting  = 90  and 

 = 0 , B is obtained by setting  = 90  and  = 90 , C 

is selected by setting  = 0 and  = 90 in equation (2). 

In combination 2, A and B are taken as one, C is same as in 
combination 1. This combination gives better result than the 
conventional ADI-FDTD method. In combination 3, B is 
same as in combination 1, the parameters A and C are set to 1 
in order to examine the dispersion characteristics due to the 
optimization in the x- direction only. In combination 4, A is 
same as in combination 1, the parameters B and C are set to 1 
in order to examine the dispersion characteristics due to the 
optimization in the y- direction only. Fig 6 shows the 
numerical dispersion for combination 1 with CFL factor equal 
to 5 and it demonstrates that the DO-ADI-FDTD is better than 
the conventional method, plots for the rest of combinations 
and more details can be found in [23]. 
 

 
Fig. 6  Numerical dispersion for combination 4 and the conventional ADI-

FDTD method 
 
 Fig 7 shows the absolute error versus the CFL number. The 

DO-ADI-FDTD method shows less dispersion than that of the 
conventional method.  
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Fig. 7  Absolute error vs. CFLN with combination 3 

 
VI Conclusions 

 
In summery all methods in this paper are aimed at improving 
the efficiency of FDTD method and the ADI-FDTD method, 
especially of the ADI-FDTD method. To improve the 
computational efficiency an efficient hybrid method is 
introduced. It is found that the hybrid technique improves the 
computation efficiency in terms of both CPU time and 
memory for modeling RF/microwave structures.  To have 
better results with larger time steps, error-reduced ADI-FDTD 
methods are introduced. They not only retain the same 
numerical computational efficiency as the conventional ADI-
FDTD method, but also achieve similar accuracy to that with 
the CN-FDTD. In particular, the first method presents 
superior performance with the large time steps. To control the 
dispersion of the ADI-FDTD method dispersion optimized 
ADI-FDTD method is proposed with the introduction of 
dispersion controlling parameters. Choices of different 
controlling parameters are investigated. For all the cases 
proposed methods are in general better than the conventional 
ADI-FDTD method; however, the controlling parameters 
need to be chosen optimally to lead to better dispersion error 
reductions. 
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