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Abstract 

 
A huge computation time is required for a method such as the 
method of moments (MoM) which estimates a physical 
quantity by descretizing an integral equation to a set of 
simultaneous linear equations, because its system matrix, 
impedance matrix in MoM, is dense in general. It has been 
reported that the wavelet transform can be used to make 
dense impedance matrix sparse for reduction of the 
calculation complexity [1]-[6]. However, if the impedance 
matrix has discontinuity in the space domain, it oscillates in 
the spectral domain. Consequently enough sparcification can 
not be realized by the wavelet transform. In this paper, a new 
transformation based on a wavelet transform is proposed to 
overcome the case where the impedance matrix becomes 
discontinuous in the space domain with validation of its 
effectiveness. 
 

1. SPARSIFICATION BY THE WAVELET TRANSFORM 
 
Wavelets are applied in direct and indirect way, that is, the 
direct way uses wavelets as the testing and the trial functions 
and the indirect way is performed by the wavelet transform on 
the impedance matrix. This paper deals with the latter. 
  In MoM, the integral equation described as 
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is discretized into the following simultaneous equations 
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where G is the dyadic green’s function, sJ  is the unknown 
induced current,  is the incident electric field, Z  is the 
impedance matrix, and J ,  are discretized vector of the 
induced current and the incident electric field respectively. 
Since the impedance matrix is usually dense, eq.(2) is 
transformed into wavelet domain as 
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Each matrix (vector) is obtained by the discrete wavelet 
transform as the following equations. 
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where is the wavelet transform matrix which is an 
orthogonal matrix satisfying . For the wavelet 

transform matrix, Daubechies wavelets with the order of 8 are 
used throughout all the calculations in this paper. Due to the 
wavelet transform, the impedance matrix in the wavelet 
domain 
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Z  becomes sparse, that is, most of its elements are 
approximately zero. Therefore it can then be thresholded, that 
is, those elements which have magnitude less than the defined 
threshold  are discarded, and the remaining elements of Z  
are stored in sparse matrix form. Although there are several 
methods for defining of , it is defined as in [5], 
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where  is the number of unknowns, and N  is a constant 
value, defined 0.1 in this paper. If the impedance matrix after 
thresholding is described as Z , the unknown induced 
current can be calculated by the following equation, 
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This kind of equation is usually performed with iteration 
methods for sparse matrix such as the conjugate gradient 
method. 
 

2. PROPOSAL 
 
Referring to Kim[1] and Steinberg[2], sparsification by the 
wavelet transform is achieved when the following two 
conditions are satisfied: 

(a) wavelets have compact support in both the space 
and the spectral domain. 

(b) impedance matrix varies slowly in the spectral 
domain. 

(a) is always satisfied since it is one of the features of the 
wavelets. However, (b) is not realized when the impedance 
matrix has discontinuity in the space domain. To explain this 
situation, a scattering problem with several linear conducting 
elements is considered as shown in Fig.1. Px Py represents 
the number of conducting elements for the direction of x y 
axes respectively and the total number of the conducting 
elements P is P = Px×Py. Spacing between the elements is /2 
for x y axes respectively. All the elements are discretized 
with spacing of /10, its length is 12.8 , and the total number 
of sampling points per an element is 128. Electric field is 
incident from –y direction as a plane wave, and its 
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polarization is +z direction. Fig.2 shows the spectral 
characteristics of impedance matrix when P = 1, 2. It is 
confirmed that the result of 1 element case varies slowly, 
while the result of 2 elements case indicates significant 
oscillation. 
  In the above mentioned example, the impedance 
matrix is written as the following form. 
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where Zpq is the direct or the mutual impedance matrix 
between p th and q th elements. The boundary between each 
partial matrices results in discontinuity, and that leads to 
oscillation in the spectral domain. As a result, sparsification 
of the impedance matrix can not be achieved enough. 
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Fig. 1: Calculation model 
 
 

To overcome this problem, if the impedance matrix 
can be divided into partial matrices which has no 
discontinuity as in eq.(7) and the structure of scatterers is 
periodic, the transformation is not performed with NP x NP 
wavelet transform matrix WNP×NP, but performed with the 
modified transform matrix W’NP×NP which consists of P x P 
partial matrix WN×N which is N x N wavelet transform matrix 
and operates on each partial matrix Zpq in Z. Note that, to 
keep  
 

 
(a) Real 

 
(b) Imaginary 

Fig. 2: Spectral characteristics of impedance matrix 
 
 

W’NP×NP being an orthogonal matrix, its partial matrices WN×N 
are multiplied by the elements of Hadamar matrix as 
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where hpq indicates the element of Hadamar matrix. The 
orthogonality of W’NP×NP is easily proved as following. 
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TABLE 1: NUMERICAL RESULTS  

P (Px, Py) NP Method % of nonzero elements
(Real    Imag) Condition number CPU time [sec] Error in current density

(Real    Imag) 
Brute force - 102.74 0.094 - 

Conventional 18.31    5.04 105.42 0.047 0.0093    0.012 1 (1, 1) 128 
Proposal 18.31    5.04 105.42 0.047 0.018    0.033 

Brute force - 127.37 0.28 - 
Conventional 13.34    5.94 115.86 0.14 0.023    0.0070 2 (2, 1) 256 

Proposal 10.45    3.70 118.66 0.11 0.015    0.0066 
Brute force - 135.85 3.20 - 

Conventional 11.35    7.48 144.65 1.55 0.023    0.011 4 (2, 2) 512 
Proposal 8.19    3.84 142.32 0.59 0.0068    0.0094 

Brute force - 153.15 16.94 - 
Conventional 11.90    9.64 165.84 7.84 0.0044    0.0067 8 (4, 2) 1024 

Proposal 4.77    2.99 151.38 1.52 0.0035    0.0066 
Brute force - 168.57 139.34 - 

Conventional 13.12   12.08 176.30 60.25 0.0053    0.0035 16 (4, 4) 2048 
Proposal 4.30    3.47 174.17 10.19 0.0024    0.0028 
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3. NUMERICAL RESULTS 
 
The proposed method explained in the previous chapter is 
validated with the several parameters shown in  
Table 1: Numerical results  as a function of problem size. 
The problem size studied here ranges from NP = 128 to 
2048 which corresponds to the range of the number of 
conducting elements P varying from 1 to 16. Three methods 
are compared here, one is referred to “brute force” and is 
original method of moment without any transformations, 
other one is “conventional” wavelet method, and the last one 
is the proposed method shown as “proposal”.  

In all the results, the proposed method shows less 
percentage of non-zero elements than the conventional 
method. This means that the sparsification is more effective 
for the proposed method than the conventional one. It can 
also be said that the higher the number of unknowns N 
becomes, the larger the difference between the conventional 
and the proposed method is. Next, with regard to the 
condition number, significant difference can not be seen 
among the three methods for all the cases. For the results of 
CPU time, remarkable difference can be seen between the 
conventional and the proposal. Detail consideration for this 
will be given below with Fig.3. It also turns out that the 
estimation error of induced current is around 2% for all the 

results, and it can also be seen that the results for the 
proposal is slightly less than those for the conventional. 

Fig.3 presents a comparison of CPU time required 
to solve the moment equations with the bi-conjugate 
gradient method. Brute force is approximately on the order 
of O(N3), the conventional is O(N2.5), and the proposal is 
about O(N2). This clearly indicates the effectiveness of the 
proposed method. 

Fig.4 describes an example of calculation of 
induced current density. It can be objectively confirmed that 
the results for the three methods show very good agreement 
with each other. 
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Fig. 1:CPU run time required for solving moment 
equation with the bi-conjugate gradient method 
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Fig. 2:Induced current density on one of conducting 

elements 
 

4. CONCLUSIONS 
 
It was shown that the sparcification of the impedance matrix 
using the wavelet transform is not satisfactorilly achieved if 
the impedance matrix becomes discontinuous in the space 
domain and oscillatory in the spectral domain. To overcome 
this problem, a new transformation based on a wavelet 
transform was proposed in this paper. A scattering problem 
with several conducting elements was considered for the 
analysis of the problem. It was proved that the proposed 
method gave much more effective sparcification of the 
impedance matrix than the conventional method did, and 
CPU time was approximately less than the order of O(N2) 
for the proposed method while around O(N2.5) for the 
conventional one. It was also revealed that the proposed 
method achieved similar accuracy of estimating the induced 
currents on scatterers to conventional method. 
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