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Abstract 
 

The one-dimensional simulation results of the reflection of 
electromagnetic waves from vibrating perfectly electric 
conducting planes are presented in this paper. The perfect 
conducting plane is set to vibrate sinusoidally or in zigzag with 
an impractically high frequency so that the instantaneous 
velocity at the equilibrium position is equal to either 10 or 20 
percent of the speed of light. The reason of so doing is for the 
purpose of easy observation of the Doppler effects on the 
reflected waves. The computational results are obtained using 
the method of characteristics through the application of both 
characteristic variable and relativistic boundary conditions. By 
comparing the computational results with the theoretical 
Doppler shift values, the accuracy of the numerical method is 
investigated. It is found that the predicted data are in good 
agreement with the exact values. 
Keywords: method of characteristics, relativistic boundary 

conditions, Doppler shift, vibrating conductor 
 

1. INTRODUCTION 
 

The objective of this paper is to report an accurate numerical 
method for the computational electromagnetic scattering 
problems in one dimension and to validate the scheme 
accuracy by comparing the simulation results with the 
theoretical Doppler shift values. Several one-dimensional 
simulations are investigated where the electromagnetic waves 
reflected from perfect conducting plane that is vibrating either 
sinusoidally or in zigzag. The computational results are 
obtained using the method of characteristics with the aid of 
characteristic variable and relativistic boundary conditions. 
Several analytical studies of electromagnetic wave scattering 
from moving conductors can be dated back to as early as 1979 
[1-3]. The following observations are given as conclusive 
remarks: the translational motion of perfect conductor results 
in the well-known Doppler shifts in the magnitude of the 
scattered fields while the oscillation of target gives rise to the 
changes in phase and magnitude of the scattered fields. 
For the past half-century two most popular used numerical 
techniques for modeling electromagnetic scattering problems 
have been the method of moments (MoM) and the finite- 

difference time-domain (FDTD) technique. Another approach 
was developed to directly approximate the time-domain 
Maxwell curl equations is the method of characteristics. The 
method of characteristics was reported by Whitfield and Janus 
for the numerical solution of the Navier-Stokes equations [4]. 
Shang applied the explicit finite-difference approximation to 
solve the Maxwell’s equations [5]. The implicit formulation 
was developed for the same purpose in conjunction with the 
lower-upper approximate factorization method and found in 
good agreement with results generated by FDTD [6]. Unlike 
MoM and FDTD where the field components are allocated at 
grid nodes, the method of characteristics positions all field 
components in the center of grid cell. That is, each field 
variable in characteristics method is an averaged quantity over 
the entire computational cell. The method of characteristics is 
consequently considered a suitable approach for problems 
involving time-varying cells. To solve the problem, the method 
of characteristics casts the Maxwell’s equations in the form of 
Euler equation, transforms them into curvilinear coordinate 
system, and then directly approximates the Maxwell’s 
equations by balancing the flux within each computational cell. 
 

2. BOUNDARY CONDITION TREATMENT 
 

In order to solve electromagnetic scattering problems, one must 
specify the problem with particular initial values and apply 
proper boundary conditions since the time-domain Maxwell 
curl equations constitute a hyperbolic system. That the initial 
values must be specified implies both the electric and magnetic 
fields are given prior to the progress of numerical procedure. 
There are two types of computational cell arrays to which 
boundary conditions are applied: around the object’s surfaces 
and the truncated computational boundaries. In both areas of 
the computational domain field components are maneuvered 
according to physics during the process. As an example, the 
tangential component of the electric field intensity must vanish 
on the surface of a stationary perfect conductor and there’s no 
penetration of field into the conductor. On the outer 
computational boundaries, the Sommerfeld’s radiation 
condition must hold. The proper boundary conditions ensure 
that there is no reflecting of fields from this layer of cell. 
Since the perfect conducting plane is vibrating with a relatively 

1



high frequency, the relativistic boundary conditions must be 
considered. The boundary conditions used in the present 
method are the combination of the characteristic variable (CV) 
boundary conditions and relativistic boundary conditions. The 
CV boundary conditions are inherent from the nature of the 
method of characteristics. CV is defined as the product of the 
instantaneous variable vector and one row eigenvector 
associated with one particular eigenvalue. Every eigenvalue 
designates the direction and velocity of the information 
propagating across the cell face. The helpfulness of CV for the 
evaluation of boundary variables is evident in interpreting 
physics. 
Since the conductor is vibrating with extremely high frequency 
and in order to predict the relativistic effects, the relativistic 
relation is considered. It is given as 

n × E* = (v  n) B* (1)

 
where n and v are respectively the unit normal vector and 
instantaneous velocity of the perfect conductor. Symbols E*  
and B*  represent the boundary values of the electric field 
intensity and magnetic flux density, respectively. The CV 
arriving on the boundary (designated as CV*) is the one carries 
information approaching the vibrating boundary from the 
adjacent cell and is given by 

CV* = n × B + o D (2)

 
with o being the impedance of free space and symbols B and 
D are the electric and magnetic flux densities of the cell 
adjacent to the moving boundary. The boundary values E* and 
B*  can be solved through equations (1) and (2). 
A stationary grid system is used for a motionless boundary 
where both the cell number and cell size are time-invariant and 
uniform as depicted in Figure 1(a). If the boundary is in motion 
and moves to the left, portion of the Nth cell is truncated by the 
boundary as in Figure 1(b). Reversely, as shown in Figure 1(c), 
when the boundary travels to the right, an extra fractional cell, 
the (N+1)th cell, is introduced into the grid system. Therefore, 
both cell number and cell size are time-dependent and the 
determination of the numerical time step is so important that 
the numerical field must not to pace or skip any grid during the 
simulation. This can be done by cautiously updating the 
effective cell and accordingly adjusting the numerical time 
step. 
 

3. THE PROBLEM 
 

Plane electromagnetic wave is used in the present simulation as 
the incident excitation as specified below. It is monochromatic 
with a frequency of 0.1 GHz. Each incident wave train consists 
of five complete wavelengths. For practical reason, a Gaussian 
window is applied to each end of the wave train with a cutoff 
level of 100 dB with respect to the peak. The length from the 

peak to the truncated point is measured one wavelength as 
depicted in Figure 2. The incidence initially propagates in the 
positive-x direction in free space and normally illuminates 
upon a perfect conducting plane that is either at rest or in 
motion. The wave train has only Dz and By components whose 
electric field intensity is normalized to unity. The grid density 
is 500 points per wavelength and the uniform numerical time 
step is set so that the numerical electromagnetic wave takes 
twenty steps to march one cell size. 
For easy examination on the effects of the vibrating object on 
the reflected waves, the perfect conductor is set to move as 
described as follows. The perfect conducting plane vibrates 
either sinusoidally or in zigzag with an impractical high 
frequency and constant amplitude so that the extreme 
instantaneous velocity equals ± 0.1 C or ± 0.2 C. Note that the 
letter C stands fro the light speed, and that when the perfect 
conducting plane vibrates in zigzag, there is no acceleration 
associated with the motion except abrupt change in direction. If 
the vibration frequency and amplitude are respectively 0.1 GHz 
and 95.49 mm peak-to-peak for sinusoidal oscillation, then the 
resulted instantaneous velocity is ± 0.1 C near the equilibrium 
position. It is 150 mm peak-to-peak for zigzag path to have a 
speed of 0.1 C for the same vibration frequency. Under the 
same circumstance, if the vibration amplitude is doubled then 
the instantaneous velocity is doubled as well. In this report the 
symbol bv is used to represent the ratios of the extreme 
instantaneous velocity to the speed of light. Since bv may range 
from – 0.2 and + 0.2, | bv | is used to disregard the change of 
motion direction. The sign of bv is designated as positive if the 
perfect conducting plane and the incident waves move in the 
same direction and negative if they are approaching each other. 
The variation in the reflected electric field strength is 
investigated by the theoretical Doppler shift values 

| Ei |
v

v

b1

 b1

+
−  

(3)

 
where | Ei | is the normalized electric field strength of the 
incidence. 
 

4. RESULTS 
 

In order to observe how the electromagnetic fields are affected 
by the vibrating perfect conducting plane, two time-sequences 
of the electric field intensity are illustrated in Figures 3 and 4. 
The former is reflected from a sinusoidal vibrating boundary 
with a frequency as high as the incident waves (fv = fi = 0.1 
GHz). The latter is for the case where the perfect conducting 
plane vibrates in zigzag with a frequency being five times as 
high as the incidence (fv = 5 fi = 0.5 GHz). It can be obviously 
seen that the reflected electric fields reveal the oscillatory 
behavior of the perfect conducting plane; that is, the Doppler 
effects on the wave form and amplitude of the reflected fields. 
For closer observations, another set of result is plotted in 
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Figure 5 where the vibration amplitude is doubled and so is the 
instantaneous velocity. The exact values in the reflected 
electric field intensity are given as indicated. The calculated of 
the reflected electric field magnitude are summarized in Table 
1 along with the theoretical values. They are in good agreement. 
Plotted in Figure 6 are the phase changes based on the case 
where the perfect conducting plane is motionless. Once more 
they reveal the vibration characteristics of the object, frequency 
and form. 
 

5. CONCLUSION 
 
The method of characteristics has been shown to accurately 
predict the Doppler effects on the reflected fields from 
vibrating perfect conducting plane in one dimension. It is also 
shown that the application of the combined boundary 
conditions, the relativistic and characteristic variable boundary 
conditions, is appropriate. The goal of the future research is to 
develop the existing code for two- and three-dimensional 
problems. 
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TABLE 1: Doppler shifts: reflected electric field magnitude. 

Velocities
bv 

Theoretical 
Zigzag 

(Calculated)
Sinusoidal 

(Calculated)

– 0.2 1.5000 1.5009 1.5009 

– 0.1 1.2222 1.2224 1.2228 

+ 0.1 0.8182 0.8179 0.8178 

+ 0.2 0.6667 0.6665 0.6665 
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Fig. 1: Computational cell indexing: (a) Stationary grid system, (b) The Nth cell is 

partially truncated, (c) The (N+1)th fractional cell is introduced. 
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Fig. 2: Incident EM wave train: electric field intensity. 
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Fig. 3: Electromagnetic waves interact with the vibrating perfect conducting 

planes (fv = fi ; Sinusoidal). 
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Fig. 4: Electromagnetic waves interact with the vibrating perfect conducting 

planes (fv = 5 fi ; Zigzag). 
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Fig. 5: Reflected electric fields from vibrating perfect conducting planes with 

various velocities. 
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Fig. 6: Phase differences based on the | bv | = 0 case. 
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