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1. Introduction 
In this paper, we propose a new shape design methodology to find an optimal shape working in a wide 
band from a given shape. The proposed algorithm is based on the finite difference time domain 
(FDTD) analysis and the design sensitivity (DSA) analysis to evaluate the gradient information of the 
objective function which represents the performance of the design. 
Recently, the authors proposed the optimal shape design algorithm based on FDTD and DSA [1][2]. 
In [1][2], however, the design sensitivity was not directly evaluated because the adjoint variable 
equation in the FDTD could not be derived in a straightforward way. In order to solve this problem, 
we employed an adjoint variable equation that was derived from the finite element time domain 
(FETD) formulation. This adjoint variable equation was, then, transformed to the coupled Maxwellian 
differential equations, which were solved by the general Yee’s algorithm. In the previous algorithm, a 
mesh generator is needed at each design iteration to generate new meshes because the updated shape 
is different from the old one and therefore the old mesh is not suited for the updated shape. 
By using the conformal FDTD (CFDTD) algorithm [3][4], we propose the new shape optimization 
algorithm which does not need the use of the mesh generator at each design iteration. Also, since the 
adjoint variable equation can be derived directly using the CFDTD, we can calculate the gradient 
information easily. 
Use of polynomial and spline representations for shape parameterization can obviously reduce the 
total number of design variables. A polynomial or spline can describe a curve in a very compact form 
with a small set of design variables. In addition, one can avoid unrealistic design when the shape 
variables are the point-based coordinates. In this paper, the design variables are parameterized using 
the Bezier spline (B-spline) curve. In order to verify the proposed algorithm, we apply it to the design 
of a tapered slot array antenna, of which the object is to find a new shape to reduce the return loss in 
wideband than that of the initial shape. 
 
2. Conformal FDTD and Design Sensitivity Analysis 
A general finite difference form of the time-domain Maxwell equations can be represented as 
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where upper dot denotes the derivative with respect to the time variable. J and M are the electric and 
magnetic current density, respectively. And the diagonal terms are εσ=Σ2  and µσ *

1 =Σ , where σ  
and *σ  mean the electric and magnetic conductivity, respectively. And the off-diagonal terms, L1 and 
L2, are related to the finite difference coefficients for the curl operators. If the time derivatives of (1) 
are replaced with the central difference relations, (1) becomes the conventional Yee’s equations. 
In case of an arbitrary shaped model, the conventional FDTD algorithm may introduce significantly 
numerical errors due to the staircasing approximation, unless a relatively fine mesh is used. The 
conformal FDTD (CFDTD) technique can be used to obviate this problem and to improve the 
accuracy of modeling the curved boundaries such as PECs and dielectrics. In the CFDTD, the electric 
field update algorithm remains unchanged from that in the conventional Yee’s scheme, but the 
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magnetic field is updated differently, according to the deformed mesh. In Fig. 1, for the Hz component, 
we use 
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where δx and δy denotes the cell length along the x- and y-directions, respectively, outside the PEC. 
Therefore, for an undistorted cell, the H-field update equation is the same as that of the conventional 
scheme. 
In order to testify the optimization performance, we introduce a cost or objective function as 
 ( ) ( ) ( )( )∫ ∫

Ω
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where Tf is a fixed final time and G an arbitrary differentiable function of the electromagnetic fields E, 
H, and the design variable vector p. mΩ  is an observation domain where the objective function is 
evaluated. In this problem, the design variable vector p means the shape of the model which is to be 
designed. Note that the electromagnetic fields E and H are dependent of the design variable vector p. 
Design sensitivity is the gradient of the objective function with respect to design variable vector p, 
which indicates that how the variation of design variables will affect the electromagnetic performance 
or the objective function. Using the gradient information, one can find the maximum or minimum of 
the objective function easily. 
The total derivative of F with respect to p is represented as 
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Differentiating (1) with respect to p, we can obtain Ep and Hp, then 
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denotes that the variable is held constant for the derivative process with respect to design variable 
vector p. In (5), in order to evaluate Ep and Hp, one should solve (5) at each variation of p, which 
requires the solving time as many as times of the number of the design variables. In this work, we 
introduce the adjoint variable method [5] to reduce the computational burden to calculate (5). 
Multiplying (5) by the transpose of the adjoint variable vector ( ) ( )( )tt γλ , , and integrating over the time 
interval [ ]fT,0 , we have 
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Applying the integration by parts to (6) and using Ep(t=0)=0 and Hp(t=0)=0, then we have 
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Since ( ) ( )( )tt γλ ,  is an arbitrary vector, we can introduce the terminal condition ( ) ( ) 0== ff TT γλ  to 
eliminate the first term of (7), then we have 
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From (4) and (8), we obtain the adjoint variable equation 
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The above equation is a terminal value problem. To handle this, we introduce the backward time 
scheme tT f −≡τ  to (9). Then, we have 
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 where ( ) ( )tT f −= λτλ  and ( ) ( )tT f −= γτγ . (10) 

Note that τdddtd −≡ . Using (1) and (10), we obtain the design sensitivity as 
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In the conformal FDTD scheme, the only L1 is dependent on the shape design variable vector p. 
Therefore, the design sensitivity becomes 
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Equation (12) is the point-based gradient information. In this paper, to avoid a roughly designed shape, 
we use a parametric shape based on Bezier spline (B-spline) functions. The B-spline curves are 
generated by the control points which act as the design variables in this paper. During the 
optimization procedure, only the control points are changed so that their corresponding nodal points 
lie on a smooth B-spline curve. The design variables and the control points are related by the 
parameterization using the B-spline curve and it is represented as 
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From (12) and (13), the derivative of F with respect to the control point is given by 
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where NP is the number of the nodal points. Using the sensitivity information of (14), we can perform 
the shape optimization of a given geometry. Since the objective function F is related to the design 
variables in an implicit manner, an iterative optimization technique is preferred to find the optimum 
value. In this work, we use the steepest descent algorithm. 
 
3. Numerical Examples 
The proposed shape optimization method is applied to the taper shape design of an E-plane tapered 
slot array antenna (E-TSA) as shown in Fig. 2. Width of the unit element is 10mm and length of taper 
region is 20mm. The design object is to minimize the return loss in wideband for a given linear 
tapered shape. If we assume that the shape of E-TSA and the excitation of each element are symmetric 
in E-plane, we can model the E-TSA as a single element with proper boundary conditions such as 
PEC and absorbing boundary conditions (ABCs). Fig. 3 shows the initial shape of the linear tapered 
antenna and the design variables which are the control points. During the optimization procedure, we 
assume that the control points are allowed to move along the only y-direction holding the symmetric 
conditions. In this problem, the number of design variables or control points is 6. But the four empty 
circles are only movable and the two filled circles are fixed during the optimization procedure. Fig. 4 
shows the optimized shape of the tapered antenna after the 50 design iterations. Fig. 5 represents the 
values of the objective function which are normalized by the initial value as the optimization iteration 
proceeds. And Fig. 6 represents the values of S11 in 6~18 GHz of the linear tapered shape and the 
optimized shape by the proposed algorithm. 
 
4. Conclusions 
In this paper, we proposed a new algorithm for shape optimal design using the conformal FDTD and 
the design sensitivity analysis to improve the performance of microwave device in broadband. The 
previous algorithm needs to call a mesh generator at each design iteration to segment the 
computational region into general quadrilaterals, but the new algorithm needs not to call it since the 
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new algorithm can use the initial rectangular mesh during the design procedure. Also, in order to 
guarantee a smoothly designed shape, we introduce the parametric design variables instead of the 
point-based design variables. To verify the proposed algorithm, we applied it to the reduction of the 
return loss for a tapered slot antenna array in a wideband. 
 

                                
  

Fig. 1: Intersection between FDTD mesh and PEC                                            Fig. 2: E-TSA 
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Fig. 3: Initial linear taper shape.                      Fig. 4: Taper shape variation 
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Fig. 5: Objective Function vs. design iteration   Fig. 6: Comparison of S11 
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