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There have been many studies including computer simulations on whistler
mode waves propagating parallel to the external magnetic field in a magnetized
plasma. Less attention, however has been paid to a problem in whistler mode
waves propagating obliquely to the external magnetic field [1]. In this
report we describe a method for computer simulation of obliquely propagating
whistler mode waves, and simulation results of the Cerenkov type wave-
particle interaction between these waves and an electron beam streaming along
the external magnetic field.

SIMULATION METHOD AND MODEL _

Tn the present simuTation only electron dynamics are considered in a
homogeneous magnetized plasma. Ions are assumed to form a stationary positive
background. The electron plasma is assumed to be composed of two components.
One is a cold background plasma, while the other is a hot electron beam.

Basic equations which describe plasma dynamics are Maxwell's equations
and the equations of motions of plasma particles. In this study we have
tried to simulate obliquely propagating one-dimensional plane waves. Only
waves propagating with a finite angle to the external magnetic field IB, are
dealt with. The basic equations to be solved in the present simulation are
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Where m,-e, wg, Ew, Bw, J, % . c, and ng are the electronic mass, charge,
velocity, wave electric field intensity, wave magnetic field intensity,
conduction current density, permeability of free space, 1light speed, and
number density of the s-th electrons( beam and background electrons ),
respectively. A unit vector in the direction of z-axis is denoted by e,,
and z-axis is fixed to the direction of the wave normal vector.

In order to reduce numerical errors, all equations are solved by a
complete central difference method ( Morse and Nielson Particle in Cell

method ) [2] for both time and space by dividing time and space into mesh and
half-mesh points. The computer simulation code for the cyclotron instability
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of longitudinally propagating whistler mode wave [3] is used for the present
simulation with a minor modification,

The simulation model is shown in Fig. 1. The direction of the wave-
normal vector is along the z axis, and Bo is in the x-z plane. The plasma
is assumed to be spatially periodic with a periodic length L in the z
direction which is divided into 1024 meshes. A1l equations (1)~(4) are
computed for three dimensional components in velocity-space and real-space,
but the spatial change is assumed to be one-dimensional only in the z axis.

In this simulation, 1024 cold super-electrons and 2048 hot beam super-
electrons are traced self-consistently. The particle adopted in this
simulation is assumed to have a square distribution of charge which spreads
over one mesh spacing. The conduction current due to each particle motion
is divided into the current at the nearest two mesh points in such a rule
that the mesh point current is inversely proportional to the distance from
the center of particle position to the mesh point. This situation is shown
schematically in Fig. 2.

Initially, one cold background particle and two hot beam particles are
loaded at each mesh point. The velocity distribution function of the hot
beam particles is a shifted Maxwellian in the direction parallel to IB,, and
the perpendicular velocity is assumed to be zero. The spatial distribution
of the hot particles is made so uniform that the particle velocities should
satisfy a given velocity distribution function even in any local region.

In the first case of this study, no wave is assumed to exist in the
system initially. Although waves may be excited by the electron beam in all
directions with respect to [Bg, in this simulation model only a wave
propagating in a particular direction making an angle owith [Bg is taken
into account. In the second case of our simulation, an initial existence of
a finite amplitude obliquely propagating whistler mode wave is assumed.

SIMULATION RESULTS

Linear dispersion relation of beam-plasma system with the parameters
same as those initially used for our simulation is shown in Fig. 3, where
the ratio of the plasma frequency, Mg to the cyclotron frequency, Q¢ is 0.5,
the wave propagating angle, © is 30°, the electron beam velocity, Ug is
0.289c, the beam temperature in the direction to [Bg, Tyis 104 K, and the
density ratio of the beam to the background plasma, ng is 0.01. In Fig. 3,
thin lines represent the dispersion relation for the case of no beam ( Ng =
0 ). A branch, w/Qev 0.4 is a whistler mode wave. Thick solid 1ines,dashed
lines, and dotted Tines represent real solutions and real and imaginary
parts of complex solutions of w for given.real k in the case of n.=0.01,
respectively. Two instability regions are seen including a whist?er mode
instability.

The time evolution of the wave number spectrum of longitudinal electric
field Ez obtained from the simulation of the first case is shown in Fig. 4,
where K is a wavenumber normarized by 1/L, and is same as that shown in the
upper abscissa in Fig. 3. Up to 20Ty ( T, : cyclotron period ), the time
evolution of the spectrum is consistent wqth the linear theory. Nonlinear

-360-



effects become dominant after 20Ty.

Wave frequencies can be determined from a phase difference jna short
time interval for each component in the k-spectrum. By this procedure, w-k
diagrams are constructed for 6 different times, which are shown in Fig. 5
with the normarized k as the abscissa and the normarized » as the ordinate
as shown in Fig. 3. Initially, waves are excited on such a line in the w-k
diagram on which the Cerenkov condition with the electron beam is satisfied.
For the time interval between 10Ty and 20Ty, the w-k relationship of
growing components lie on the growing branch of the w-k diagram shown in
Fig. 3. After 30Ty, the dispersion relations begin to change by nonlinear
effects. Finally, the dispersion relations tend to those for the no beam
case. This final stage may be due to a thermalization of the beam
distribution function.

In the second case, a finite amplitude whistler mode wave with a k
giving the maximum growth rate in the linear dispersion relation as shown in
Fig.3 is assumed to propagate initially. It turns out that the amplitude of
the wave grows up until a particular saturation amplitude which is almost
identical with that of the first case, then an ampiitude oscillation starts.
Time evolutions of longitudinal electric field with different typical §
are shown in Fig.6. The finite amplitude wave with X = 16 shows an amplitude
oscillation after a 1inear growth due to an amplification by the beam.

The wave-particle interaction treated in this paper is considered as a
kind of coherent emissions of the Cerenkov radiation in a magnetized plasma,
and this result is helpful in investigating the generation mechanism of VLF
hiss,spontaneously occurring in the earth's magnetosphere [4][5][6].

Computations are done at both the Data Processing Center of Kyoto Univer-
sity and the Computer Center of Institute for Plasma Physics Research,
Nagoya University.
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Fig. 1  Simulation model

-361-



half-mesh
point

mesh pointw

i-1 j t i+1 i+2
center of super particle
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