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I. INTRODUCTION

Yee’s finite-difference time-domain (FDTD) method has been widely used for time-domain elec-
tromagnetic field simulations [1]-[3]. However, as the size of a structure or its computational domain
becomes larger, the length of the time integration has to increase to capture electromagnetic interac-
tions across the electrically large computational domain. Furthermore, the number of grid points per
wavelength needed for a given accuracy increases with the length of the integration in time [4], [5].
With second-order accuracy of the standard Yee’s FDTD scheme, the computational cost becomes
prohibitively large for accurate full-wave time-domain solutions of electrically large structures. To
address the limitations of second-order explicit methods, many high-order explicit FDTD schemes
have been explored for their numerical efficiency [3], [6]. In [7], a long-time stable fourth-order
accurate FDTD scheme was proposed and its fourth-order convergence was demonstrated using a two-
dimensional (2-D) partially-filled cavity geometry. This paper presents the proposed FDTD equations
in 2-D transverse magnetic (TM) polarization case and investigates its stability condition and numerical
errors.

II. FOURTH-ORDER FDTD EQUATIONS (2-D TM CASE)

Maxwell’s equations for 2-D TM polarization case is considered here for simplicity. Assuming
isotropic, homogeneous, lossless medium, Maxwell’s equations can be written as
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Applying the fourth-order staggered backward differentiation method [8] to (1) for temporal integra-
tion,
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For spatial derivatives in L(U), the fourth-order staggered central difference approximation is used as
in Fang’s (2,4) FDTD scheme [6] and the resulting difference equations are of fourth-order accuracy
in space and time.
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III. FORMAL ANALYSIS AND DISCUSSION

For formal analysis of the fourth-order FDTD equations in 2-D TM case, consider a plane wave
eigenmode in a 2-D space represented by⎡
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where ix, iy , kx, and ky denote space indexes and wavenumbers along the x and y directions,
respectively. Then, the proposed fourth-order difference equations described in the previous section
can be cast in a matrix equation

AX = 0. (5)

The Routh-Hurwitz method [9],[10] is used to find the stability condition
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Solving complex polynomial equations associated with the difference equations in (5) leads to the
dispersion and dissipation properties of the proposed fourth-order FDTD scheme. Fig.1 shows the
roots of the characteristic equation for the fourth-order scheme as a function of spatial resolution kh,
where k and h are the wavenumber and the cell size, respectively. The amplitudes of physical modes
represented by solid lines become slightly smaller than 1 as kh increases. This indicates that the fourth-
order scheme is numerically dissipative. The amplitude errors of the proposed fourth-order FDTD
scheme and Yee’s second-order scheme are compared in Fig.2. Yee’s second-order FDTD scheme is
non-dissipative showing no amplitude error while the proposed fourth-order scheme exhibits some
amplitude error as the spatial frequency increases. However, the numerical dissipation is negligibly
small. For the moderate spatial resolution of kh = 2π/10, the amplitude error is less than 2 × 10−6.
Fig.3 compares the phase errors of the fourth-order scheme and Yee’s second-order scheme. It can be
seen that Yee’s second-order scheme suffers much more numerical dispersion error than the fourth-
order scheme. For kh = 2π/10, the phase errors of the second-order Yee’s scheme and the proposed
fourth-order scheme are 0.0068 and 2.2825 × 10−4, respectively. The superb accuracy of the fourth-
order scheme can be clearly seen again in Fig.4 where the phase errors versus propagation angle of
the fourth-order and second-order FDTD methods are plotted.
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Fig. 1. Magnitude |Z| of eight roots of the characteristic polynomial equation for the fourth-order scheme as a function of
kh. The Courant number, s = 0.3 and the propagation angle, α = 45◦. The solid and dashed lines represent physical and
computational modes, respectively.
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Fig. 2. Relative amplitude errors of the proposed (4,4) scheme and Yee’s (2,2) scheme. s4,4 = 0.3, s2,2 = 0.7 and α = 45◦.

- 1151 -



0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

kh

θ er
r

(4,4)
(2,2)

Fig. 3. Relative phase errors of the proposed (4,4) scheme and Yee’s (2,2) scheme. s(4,4) = 0.3, s(2,2) = 0.7 and α = 45◦.
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Fig. 4. Relative phase errors versus propagation angle of the proposed (4,4) scheme and Yee’s (2,2) scheme. s(4,4) = 0.3,
s(2,2) = 0.7 and α = 45◦.
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