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INTRODUCTION

It is well known that a field of radiation from a waveguide horn or
from a laser cavity is well approximated by a linear superposition of
paraxial beams. So it is important to study the propagation and scattering
of beams. The scattering of circular eylinders which is dealt with the two
dimensional problem has been studied by many workers.

Recently, Langlois et al. [1] investigated the diffraction problem of
a transversal three-dimensional Gaussian beam at grazing incidence. The
authors [2] analyzed the scattering of the three-dimensional lowest-order
Gaussian beam at obliquely incidence upon the parallel circular cylinders.

In this paper, we consider the scattering of a three-dimensional
Hermite-Gaussian beam at obliquely incidence upon the parallel conducting
circular cylinders by using the complex-source-point method [3] and the
dyadic Green's functions [4]. As numerical examples, the fields scattered
by an array of eight cylinders are calculated and examine the effects of
the tilt of the incident beam axis on the scattered fields. The case of an
E-polarized wave incidence is discussed and the time factor exp(jwt) is
suppressed.

EXPRESSION OF THE INCIDENT BEAM

In this section, we consider the expression of an incident Hermite-
Gaussian beam in terms of the complex-source-point multipole fields. The
radiated field from the infinitesimal current, which is located at the
complex source point (0, 0, —jb) in the coordinate frame (X, Y, Z) and
polarized in the X direction, is represented by using the vector potential
A as follows:
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where k(=21/i) is the wave number in free space, R(=VX2+Y?+(Z+jb)?) is the
complex distance from the source point to the field point (X, ¥, Z), b is
related with the smallest spot size wo(=V2b/k) and ix is the unit vector
in the X direction. In this paper, we choose the branch of R such that
its real part is positive in order to satisfy the radiation condition.

We define the vector field excited by a multipole as
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If the field is far from the branch line (lkR|>1) and in the paraxial
region (X2+Y2<z?+b%), the multipole field is approximated by
WK exp(kb](—l)m+nw .
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where U, is the complex beam proposed by Siegman [5]. When we use the
relation between the conventional and complex beam [6], the conventional
Hermite-Gaussian beam wg, which is mainly polarized in the X direction is
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expressed as follows:

—kao'v rm! n!

A ony exp (—kb)

[m/2) [n/2] 9—P*Q (_mo)m+n—2(p+q}

G :
it q‘:’c plgl(m—2p) (n—2q)! m—2p n—2q (1)

SCATTERING BY CYLINDERS

Consider an arbitrary configuration of parallel conducting circular
cylinders as shown in Fig. 1. For the following analysis, we introduce the
coordinate frame (x;, y;, z;) associated with the ith cylinder and the
reference coordinate frame (x, y, z). The axis of the ith cylinder with
radius a; coincides with the z; axis and the z; axis is parallel to each
other.

The coordinates X, Y and Z are related to the coordinates z;, y; and
Z; by
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where N 1is the number of cylinders and Ij;, ls; and I3; are the direction
cosines of z; axis with respect to the X, Y and Z axes, and so on.

In this paper, the dyadic representation of fields is used in order
to investigate the scattering of a beam whose propagation axis is tilted
in any direction. By utilizing the electric dyadic field for the
infinitesimal current [4], the electric dyadiec field for a multipole is
given by
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R; and R;® are the position vectors of the observation point and the source
point, respectively, in the coordinate frame of the ith cylinder and
n=VE.—kZ. The cylindrical vector wave functions M;"” and N/Y are defined
in the cylindrical coordinate frame (r;, @;z;) of the ith cylinder [4].

The scattered electric dyadic field by the ith cylinder which
ensures the radiation condition is expressed as follows:
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Applying the boundary conditions at r;=a; after expressing the scattered
electric field by the ith cylinder in the coordinate frame of the i'th
cylinder [7], we obtain the equations which determine the unknown
coefficients A; and B;.

Since a higher-order beam is expressed in terms of the multipole
fields, the total scattered field is given by
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The evaluation of the integral in Eqg. (12) by the method of steepest
descent, after using the asymptotic formulas for the Hankel functions,
leads to the far scattered field.

Numerical calculations are carried out for the scattering pattern of
the lowest-order beam (m=n=0) with w=2.51 incident upon the eight same
cylinders(N=8) with a=0.11 and the separation d=1 located symmetrical on
the y axis. It is assumed that the propagation axis of the incident beam
makes an angle of 6p(=70°) with z axis and ¢p(=30°) with x axis and the
distance between the reference origin and the position of the beam waist
00=5L. Figure 2 shows the normalized scattering pattern for the 6
component in the azimuthal plane(6=110°) where the scattered field has the
maximum value. The right and left semicircles in Fig. 3 correspond to the
meridional plane $=30° and ¢=210°, respectively. The scattering pattern in
the azimuthal plane is different from that at normal incidence because the
condition for the angle of the space harmonies of order -1(Bragg angle) at
obliquely incidence deviates from that at normal incidence. The scattering
pattern in the meridional plane is approximately identical with the far
field pattern of the incident beam.
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CONCLUSIONS

The scattering of a three-dimensional Hermite-Gaussian beam at
obliguely incidence upon the parallel conducting circular cylinders has
been analyzed by using the complex-source-point method. Numerical
calculations have been carried out for the scattering pattern of the
lowest-order beam. The results indicate that the scattering pattern in the
meridional plane is almost the same as the far field pattern of the
incident beam and in the azimuthal plane the directions of peaks of the
scattered beams at obliquely incidence are different from those at normal
incidence because of the effect of the tilt of the incident beam axis. The
method in this paper can be extended to the scattering of parallel
dielectric circular cylinders.
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Fig. 1. Geometry of the problem.
00

90° 90°

-40

-20

0dB
270° bas 180°

Fig. 3. Scattering pattern in the

meridional plane
Fig. 2. Scattering pattern in the ¢=30° (right semicircle),
azimuthal plane 6=110°. $=210° (left semicircle).
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