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1. Introduction

Approximate boundary conditions can be widely used to simplify analytical and numerical so-
lutions of scattering problems involving complicated structures. The simplest conditions are
the standard impedance boundary condition applicable at the surface of a lossy material and
the related transition condition modeling a thin material layer as a current sheet. Thin lossy
material layers are of great importance for radar cross section (RCS) and target identi�cation
studies. A mathematical model of such a layer is a resistive sheet, and there have been extensive
investigations on the scattering by resistive strips [1{3]. However, the solutions become increas-
ingly inaccurate at broad incident angles when the electric vector has a component normal to
the layer. Recently it was suggested by Senior and Volakis [4, 5] that a thin material layer
can be e�ectively modeled by a pair of modi�ed resistive and conductive sheets (or resistive
and modi�ed conductive sheets) each satisfying given boundary conditions, which are shown to
provide accurate modeling of thin material layers arising in di�raction problems [6, 7].

In this paper, we shall consider a thin, homogeneous material strip as an example of geome-
tries modeled by approximate boundary conditions, and analyze the E-polarized plane wave
di�raction by means of the Wiener{Hopf technique [8]. Introducing the Fourier transform for
the scattered �eld and applying boundary conditions in the transform domain, the problem is
formulated in terms of the simultaneous Wiener{Hopf equations, which are solved rigorously via
the factorization and decomposition procedure. However, the solution is formal in the sense that
branch-cut integrals with unknown integrands are involved. Approximate methods are further
applied for evaluation of the branch-cut integrals, and a high-frequency asymptotic solution,
valid for the strip width large compared with the wavelength, is explicitly derived.

The time factor is assumed to be e�i!t and suppressed throughout the following analysis.

2. Formulation of the Problem

We consider the di�raction of an E-polarized plane wave by a thin material strip as shown in
Fig. 1, where the relative permittivity and permeability of the strip are denoted by "r and �r,
respectively. Let the total electric �eld �t(x; z) [� Ey(x; z)] be

�t(x; z) = �i(x; z) + �(x; z); (1)
where �i(x; z) is the incident �eld given by

�i (x; z) = e�ik(x sin�0+z cos�0); 0 < �0 < �=2 (2)
with k (= !

p
�0"0) being the free-space wavenumber, and �(x; z) is the unknown scattered �eld.

According to the results presented in [5], the material strip is approximately replaced by a strip
of zero thickness satisfying the second order impedance boundary conditions provided that the
thickness of the strip is su�ciently small compared with the wavelength. On the strip surface,
the total �eld satis�es the approximate boundary conditions as given by

[Hz(+0; z) +Hz(�0; z)] + 2Rm [Ey(+0; z) � Ey(�0; z)] = 0; (3a)�
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[Ey(+0; z) + Ey(�0; z)] + [Hz(+0; z) �Hz(�0; z)] = 0; (3b)
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Fig. 1. Geometry of the problem.

where
Re = iZ0=[kb("r � 1)]; Rm = iY0=[kb(�r � 1)]; ~Rm = i�rZ0=[kb(�r � 1)] (4)

with Z0 and Y0 being the intrinsic impedance and admittance of free space, respectively. In the
following, we shall assume that vacuum is slightly lossy as in k = k1 + ik2 with 0 < k2 � k1.
The solution for real k is obtained by letting k2 ! +0 at the end of analysis.

Let us de�ne the Fourier transform of the scattered �eld �(x; z) in (1) with respect to z as

�(x; �) =
1p
2�

Z 1
�1

�(x; z)ei�zdz; � = Re �+ iIm � (� � + i�): (5)

Then we see with the aid of the radiation condition that �(x; �) is regular in the strip j� j <
k2 cos �0 of the complex �-plane. Introducing the Fourier integrals as

��(x; �) = � 1p
2�

Z �1
�a

�(x; z)ei�(z�a)dz; (6a)

�1(x; �) =
1p
2�

Z a

�a
�(x; z)ei�zdz; (6b)

it is found that �+(x; �) and ��(x; �) are regular in the half-planes � > �k2 cos �0 and � <
k2 cos �0, respectively, whereas �1(x; �) is an entire function. Using the notations as given by
(6a,b), we may express �(x; �) as

�(x; �) = e�i�a��(x; �) + �1(x; �) + ei�a�+(x; �): (7)

Taking the Fourier transform of the two-dimensional Helmholtz equation and solving the resul-
tant transformed wave equation, we derive that

�(x; �) =

8<:� ikZ0

h
e�i�aU�(�) + ei�aU(+)(�)

i
2 � ikZ0(1=Re + 2= ~Rmk2)

� e�i�aV�(�) + ei�aV(+)(�)

 � 2ikZ0Rm

9=; e�x (8)

for x >< 0, where  =
p
�2 � k2 with Re  > 0, and
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�� k cos �0
; (9a)

V (+)
�

(�) =
d��(0; �)

dx
� k sin �0p

2�

e�ika cos �0

� � k cos �0
: (9b)

Equation (8) is the scattered �eld representation in the Fourier transform domain. Taking into
account the boundary conditions and carrying out some manipulations, we obtain from (8) that

�K(�)Jm(�) = 2[e�i�aV�(�) + ei�aV(+)(�)]; (10a)

M(�)Je(�) = e�i�aU�(�) + ei�aU(+)(�); (10b)



where

K(�) =  � 2ikZ0Rm; M(�) = 1 � ikZ0
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; (11)

Jm(�) = �1(+0; �) � �1(�0; �); Je(�) =
d�1(+0; �)

dx
� d�1(�0; �)

dx
: (12)

Equations (10a,b) are the desired Wiener{Hopf equations satis�ed by the unknown spectral
functions and hold in the strip j� j < k2 cos �0.

3. Exact and Asymptotic Solutions

The kernel functions K(�) and M(�) de�ned by (11) are factorized as

K(�) = K+(�)K�(�) = K+(�)K+(��); (13a)

M(�) = M+(�)M�(�) = M+(�)M+(��); (13b)
where K�(�) and M�(�) are split functions regular and nonzero in � >< �k2 (see [9] for de�ni-
tion). We multiply both sides of (10a) and (10b) by e�i�a=K�(�) and e

�i�a=M�(�), respectively,
and apply the decomposition procedure. This leads to
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�i

Z k+i1

k

e2i�aK+(�)V �

(+)
(��)

� � �

p
�2 � k2

(�2 � k2 + 4k2Z2
0R

2
m)

d�

� K�(�)k sin �0e
�ika cos�0

p
2�(� � k cos �0)K�(k cos �0)

; (14a)
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: (14b)

Equations (14a,b) are the exact solution to the Wiener{Hopf equations (10a,b), but they are
formal since the branch-cut integrals with the unknown integrands V(+)(�), V�(��), U(+)(�),
and U�(��) are involved.

Applying the asymptotic method developed in [10] to the branch-cut integrals in (14a,b),
we can derive high-frequency representations of (14a,b) for large jkja. Omitting the details, we
derive that

V (+)
�

(�) � �K�(�)
(

ei(2ka��=4)
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as ka!1 with �0 �= 0; �, where

Cv
1;2 = �

4

4 � [K+(k)Av(k)�1(3=2;�4ika)]2
"
� K2

+(k)Av(k)Bv(�0)e
�ika cos �0�1(3=2;�4ika)

2k(1 � cos �0)K�(k cos �0)

+
Bv(�0)K+(k)e

�ika cos �0

k(1� cos �0)K�(k cos �0)

#
; (16a)
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1� [M+(k)Au(k)�1(3=2;�4ika)]2
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with
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In (15a,b) and (16a,b), �1(�; �) is the generalized gamma function [10] de�ned by

�m(u; v) =

Z 1
0

tu�1e�t

(t+ v)m
dt (19)

for Re u > 0, jvj > 0, jarg vj < �, and positive integer m. Equations (15a,b) give the high-
frequency asymptotic solution of the Wiener{Hopf equations (10a,b), and hold for large jkja
and �0 �= 0; �. The scattered �eld is evaluated by substituting (15a,b) into (8) and taking the
inverse Fourier transform with the aid of the saddle point method.
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