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1.  Introduction

Compact ranges based on reflector technology may be based on different designs: single offset reflec-
tor, dual offset reflector compensated for cross polarisation or an offset dual reflector system consist-
ing of two orthogonal parabolic cylinders. In all cases it is necessary to make a special treatment of the
edges of the reflectors in order to reduce the diffraction effects. Other factors that influence the per-
formance is the feed taper, the surface accuracy, the distance to the quiet zone, etc.

Two different techniques are used for the edges, as for example discussed by Lee and Burnside [1].
The one is the so-called rolled edge where the reflector at the edge is gradually bended backwards
such that the reflected rays are directed away from the quiet zone. The other method is to use serra-
tions and it is the scope of the present paper to present simple design relations for the serration pa-
rameters such as the length, width and shape.

2. Serration length

Figure 1 shows a typical compact range based on an offset
paraboloidal reflector illuminated by a feed at the focus. The
rim is supplied with serrations. The figure also shows the field
in a vertical cut through the quiet zone. At the one end of the
pattern the field is slowly
varying due to interference
between the plane wave from
the reflector and the diffraction
from the nearest edge. Moving
towards the centre the ripples
become faster because also the
other edges will interfere with
the plane wave. At the same
time the ripples become smaller
due to the angular dependence
of the edge diffractions.

The performance is clearly very dependent on the amplitude and an-
gular distribution of the edge diffractions. It is the purpose of the pres-
ent section to isolate and quantify this contribution. To do this a plane
serrated reflector illuminated by a plane wave is examined, as illus-
trated in Figure 2. The reflector is infinite in the y-direction. The pat-
tern cut along x for a fixed value of z will be the same as for a narrow
strip of width w. If the strip is infinitely long the pattern will be con-
stant along x and this is the field we wish to generate by the compact
range. The field from the finite strip will approximate the infinite field
as long as the field point is in front of the strip but when the field point
approaches the ends the two fields will start to diverge. The difference
between the two fields is therefore a measure of the errors introduced

Figure 1  Typical compact range
using an offset para-
boloid

Figure 2  Plane serrated
reflector infinite
along y-direction
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by the finite length. We will denote this difference field the “edge distortion field”. The field from the
finite strip is calculated by Physical Optics (PO). In order to separate the two ends a very long strip is
investigated such that the area of interest is concentrated in the one end and the contributions from the
other end are negligible.

Figure 3 shows the edge distortion field for a
particular example: the serration length s = 1
(s is used as the unit for linear dimensions
throughout this paper), the length of the finite
strip is L = 100. The frequencies are selected
such that the wavelength is λ = s/4, s/8, s/16,
s/32 and s/64. The field is calculated in a
pattern cut along x for the constant value of
the distance to the field point z = 15. The
field from the infinite strip is normalised to
0 dB.

The results in Figure 3 show that the distor-
tion field decreases as the field point moves
into the region of the finite strip, more
quickly at higher frequencies. One notes also
that the field has decreased by 6 dB for
x = 1/2 independent of the frequency.

Ripples in the quiet zone below, say ±0.1 dB, requires that the
distortion field shall be below -40 dB. A general result for de-
sign purposes is shown in Figure 4 where the -40 dB contour
curves for the distortion field are given as a function of the
distance z to the quiet zone and the distance x from the edge
into the quiet zone.

3. Computational approach

It is clear that the simple strip approach in the previous section
does not provide information about the variation of the field in
the quiet zone in the direction orthogonal to the strips. For
typical compact ranges this effect is very small and is ne-
glected. As a consequence the actual width w of each serration
is not included in the analysis.

The fact that the field from an edge only varies orthogonal to
the edge is important from a computational point of view be-
cause it greatly simplifies the analysis when several edges are
involved in a real compact range design. It is possible in
TICRA’s reflector antenna program GRASP8 to simulate ser-
rations on a reflector edge. The serrations are defined by means
of two rim specifications, one for the tip and one for the foot of
the serrations.

The electrical influence of the serrations is simulated by modi-
fying the PO surface currents that would exist for an unserrated
reflector. This modification is carried out by multiplying the
surface currents by a weight factor which is unity for a point
inside the inner rim and which gradually decreases from one to
zero when the point moves from the inner to the outer edge.

Figure 3  The edge distortion contribution as a
function of the distance from the edge, the
distance to the quiet zone is 15
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Figure 4  The –40 dB contour
curves for the distortion
field as a function of the
distance from the edge,
x, and the distance to
the quiet zone, z
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For triangular serrations the rate of decrease is selected linear and for cosine-shaped serrations a co-
sine rate of decrease is available. It must be noted that the number of serrations or the actual position
of the individual elements is not taken into account. The above described technique for the analysis of
serration effects is extremely simple but yet it has proven to provide very good results for practical
applications.

4. Serration edge shape

The results presented in the previous sections were related to a triangular shape of the serrations, i.e.
the serration width decreases linearly with the distance from the foot to the tip of the serration. An-
other popular shape of the serration is the cosine which provides a more smooth transition from the
solid area inside the reflector to the empty area outside the reflector. The width of the serrations is here
given by w(1 + cos(πx/s))/2, where x is the distance measured from the foot to the tip.

The effects of triangular and
cosine shaped serrations are
compared in Figure 5 by show-
ing the distortion field, similar
to Figure 3, in a pattern cut in
the distance of z = 15 in front of
the strip. Only the two frequen-
cies corresponding to λ = s/4
and s/64 are considered but in
addition the results with no ser-
rations are also included.

At the low frequency, λ = s/4,
there is some difference be-
tween the linear and the cosine
serration. The latter decreases
more slowly as the field point
moves into the quiet zone. At
the high frequency the differ-
ence between the two edge
shapes is very small.

5. Tilt at the serration basis

The reflector surfaces in a real compact range are curved. The results obtained in the previous sections
with a plane reflector illuminated by a plane wave rely on the assumption that the surface shape in the
serrated region is the same as in the solid area, typically a paraboloid. In this and the following section
we will consider the effects of realistic deviations from this ideal assumption.

If the serrations are manufactured separately and attached to the rim of the solid part of the reflector
afterwards, it is likely that the serration is tilted slightly relative to the nominal orientation. Again the
strip approach is used to calculate the effects. The example to be investigated is: L = 10, s = 1 and the
field is calculated in a plane cut, z = 15, in front of the strip. The result is illustrated in Figure 6 for
three frequencies, both for the nominal orientation of the serrations and when they are tilted 2º back-
wards. The absolute values on the ordinate axis are arbitrary and the three frequencies are separated
for better readability. It is seen that the tilt of the serrations gives rise to increased ripples, especially at
the higher frequencies, and it reduces the size of the quiet zone. In practice not all the serrations are
misaligned in the same direction and with the same amount, and this will reduce the overall effect of
this type of distortion.
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Figure 5  Comparison of the distortion field for triangular and
cosine shaped serrations. The distance to the quiet zone
is 15.
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6. Serration surface shape

From a mechanical point of
view it is simpler to replace the
curved surface serrations with
plane triangles. The idea is
illustrated in Figure 7 where the
solid part of a parabolic cylin-
der is 8 units and supplied with
plane serrations 1 unit long.
The figure shows that the plane
serrations cause the rays to
diverge in the outer region of
the range.

Figure 8 shows the field in the
quiet zone 15 units in front of
the reflector both for serrations
with the parabolic cylinder
surface and for plane triangular
serrations. The example shows
that the changes in the quiet zone are very modest and that the simple, plane triangles can be a viable
and practical solution in many cases. For doubly curved reflectors the same idea can be used, but in
this case the triangular plates must be bent in one dimension to fit the rim of the solid part of the re-
flector.
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Figure 6  The field in the quiet zone in the distance 15 in front
of the reflector with and without a 2º tilt of the serrati-
ons. The compact range parameters are s = 1, L = 10.

Figure 7  Parabolic cylin-
der with plane
serrations
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Figure 8  The field in the quiet zone in front of the reflector in
Figure 7. Compact range dimensions: L = 10, s = 1.
Distance to quiet zone z = 15.
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