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1. Introduction

Asymptotic expressions of the edge-excited surface currents on a convex face of an impedance wedge
are derived by using Maliuzhinets' and Fock' theories according to the method of the synthesis developed
by Michaeli [1]. The edge of the wedge is assumed straight, and the incident electromagnetic wave is
locally plane and normal to the edge. The angle of incidence includes the case where the penumbra
regions of the edge and surface diãraction overlap.
An asymptotic description of electromagnetic åeld diãracted by an impedance curved wedge is impor-

tant since it may provide a canonical problem of high frequency diãraction theory. Michaeli derived a
relatively simple form of solution for the edge-diãracted surface currents of perfectly conducting wedge
by using the concept of spectral theory of diãraction. His discussion is focused on the case where the
penumbra regions of the edge and surface diãraction overlap, where ray interpretation of the diãraction
is diécult. When an angle of incidence is far from the shadow boundaries, it is possible to obtain the
solution by using the equivalent current method used in the area of the GTD. Molinet [2] inferred the so-
lution for impedance curved wedge from the Michaeli's results, but his result seems to be incomplete. He
used the diãraction coeécients of perfectly conducting wedge and eãect of surface wave is missing, which
is excited under some condition. In this paper, the expression of the edge-diãracted surface åeld on an
impedance curved wedge are derived by applying the Maliuzhinets's theory for straight impedance wedge
combined with the Fock's theory for curved surface. The synthesis of the solution follows Michaeli's pro-
cedure. The results can be used as the canonical problem of physical theory of diãraction with transition
currents, which we are developing. The edge diãracted åeld is interpreted as a spectrum of inhomo-
geneous plane waves, and the surface åeld excited by each spectral plane wave is obtained by analytic
continuation of the Fock function into complex space. In contrast to the case of perfectly conducting
wedge, the contribution due to the surface wave excited at the edge must be added to the edge diãracted
åeld. The results reduce to those of Michaeli for perfectly conducting wedge when the surface impedance
approach zero.

2 Derivation of Solution

Consider plane wave incident to the curved impedance wedge, as described in Fig.1. The zÄ components
of electromagnetic åelds of an incident plane wave is given by
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where (ö;û) are the cylindrical coordinates of the observation point (x; y). This wave strikes the edge
and produces the surface wave and diãracted åeld. The interaction of the direct incident wave with the
curved face may be treated separately and is omitted here. The surface åeld excited at the edge of an
impedance wedge is given by [3];[4]

F swz = Usw exp[Äjköcos(í+ Äû)]H[A]; Usw = Äâ(àÄôÄí+)
â(àÄû0)

2p taní+ sin pû0
cos p(ô+í+)Ä cos pû0 (2)

where F swz denotes Eswz for siní+ =
1

ê
and Hsw

z for siní+ = ê, ê is the normalized surface impedance

of the wedge face. H(x) = is the Heaviside's unit step function, and H(x) = 1 for x > 0 and H(x) = 0

for x < 0. 2à = ûw is the exterior wedge angle and p =
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Maliuzhinets functions [3]. If the surface pole of the wedge function representation [3];[4] is denoted by
ãsw = ô+í+ +û= ãswr + jãswi , A > 0 provided that the condition
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is satisåed and otherwise A < 0. When plane wave exp[Äjk(x cosò+ y sinò)] is incident to the curved
impedance surface, the surface magnetic åelds are obtained [5] by using the Fock's theory. Since the
surface åeld is intepreted as an inhomogeneous plane wave with complex wavenumber the åeld on the
curved face excited by the surface wave is given by

Hz = U
sw1 exp[jka siní+ Ä jk(`+ aí+)]f(õ0 +mí+; qH); qH = Äjmê (4a)
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where a is the radius of the curvature of the curved face, ` is the distance from the edge along the face
directed normal to the edge, w2(ú) is the Airy function of Fock type, w02(ú) is its derivative with respect
to ú. The contour Ä is shwon in Fig. 2.
The contribution of the edge-diãracted wave to the surface åeld on the convex impedance face is

obtained by using the spectral theory of diãraction. The result is written asî
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The contour C is shown in F.2. where
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(i) When jôÄû0j > 1

m
The integrand of G1(ú;û) is expanded by the Taylor series and truncated it by the second term. Then

G1(ú;û) becomes linear combination of the integral representation of the Airy integral w2(ú) and its
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derivative w02(ú). Then the tangential components of the magnetic åeld is given by
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It is noted that W (ú;p) ô Äj
p
w2(ú) and W0(ú; q; p) ô Äj

p
V0(ú; q) for large value of p. Thus the solution

near the shadow boundary can be recovered from the ray representation for the region far from the
shadow boundary by substituting jpW(ú; q; p) for V0(ú; q).

(ii) When jû0 Äôj < 1

m
：

This is the case where the penumbra regions of the edge and surface diãraction overlap. Evaluation
similar to the case (i) leads to the results of the magnetic åeld.
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3 Some Remarks on Numerical Computation
Thus the problem reduces to compute three kinds of functions given by V0(x; q), U0(x; q) and W0

(x; q; u). Logan[6] derived the approximate expressions Va(x; q) and Ua(x; q) for the functions V0(x; q)
and U0(x; q). The corrections Vc(x; q) = V0(x; q) Ä Va(x; q) and Uc(x; q) = U0(x; q) Ä Ua(x; q) can be
transformed into a form convenient for numerical computation. The ånal forms for the functions V0(x; q)
and U0(x; q) are given by
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The Airy functions Ai(z) and its derivatives of the complex arguments can be computed by using the
relations between the Airy and the modiåed Bessel functions.
According to the Michaeli's procedure, the function W0(x; q; u) can be transformed into
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where I2(x; y) is the incomplete Airy function. The deånition of I2(x; y) and its asymptotic expression
for large value of y are given by
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Using the properties of I2(x; y) described in [7] and the above asymptotic expansion, I2(x; y) can be
computed numerically for any values of x and y.

4 Conclusion
We derived the expressions for the surface åelds of an impedance curved wedge by applying the theories

of Fock for curved surface and Maliuzhinets for impedance wedge. To construct the solution, we use the
concept of the spectral theory of diãraction according to Michaeli. The surface åelds are expressed as the
combination of three kinds of functions U0(x; q), V0(x; q) and W0(x; q; u) and these are transformed into
to the forms convenient for numerical computation. The development of the numerical codes for these
functions are under study.
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