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Abstract

The MMP (Multiple MultiPoles) programs are based on the Generalized Multipole Tech-
nique (GMT) which has been shown to be very efficient especially for computations of
electrodynamic fields [1]. Since this method is relatively simple there was no problem
to implement it on PC’s. The power of PC’s may be increased very much by INMOS
T800 transputers which allow parallel processing. In this paper the parallel versions of
the 3-D MMP programs are presented together with a comparison of the speed of different
configurations.

Basics of the MMP programs

The MMP programs are based on the Generalized Multipole Technique (GMT) which 1.)
expands the fields themselves to avoid Coulomb and similar integrals and 2.) applies a
generalized point-matching technique (PMT) to avoid those integrals which occur in the
scalar products of the projection technique (PT) used by the method of moments (MoM).
Instead of this, the generalized PMT simply uses overdetermined systems of equations
which are solved in the least- squares sense.

The expansion functions used in the GMT are exact solutions of the field equations
in a domain with linear, homogeneous and isotropic materials. As a consequence only
the boundaries of the domains have to be discredited even in the case of lossy materials.
This simplifies the input very much, which is important especially for PC’s. The most
important expansion functions of the GMT are called multipoles. They show a ’local
behavior’. This easily produces well conditioned matrices which may be solved by a simple
updating routine using Given’s plane rotations.

Although multipole functions are more complicated than the ones preferred by other
methods (linear functions, spline functions, harmonic functions etc.) the computation time
of the functions is much smaller than the computation time for the solution of the system
of equations and may be neglected therefore (except for small problems).

Since the GMT avoids time consuming numerical integrations almost the whole com-
putation time is used for the solution of the system of equations. One might believe that
this leads to inferior resul's. In fact, if the usual PMT is applied to the MoM this may be
true. But it has been shown [1] that the ecxfended PMT with an appropriate weighting of
the equations is equivalent to a PT with the optimal choice (Galerkin) of testing functions
(and a numerical computation of the scalar products). The same results may be derived
by an error method with a convenient definition of the error. In fact these equivalences
have just been used to solve the problem of the correct weighting.
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Parallel Computations on PC’s

The rapid growth of modern computers — especially in the PC market — makes it very
important that numerical codes can be easily adapted to new machines. Since the MMP
code is quite small and the method quite simple, the programs could be adapted to the
new T800 transputers (which allow paralle]l computations on PC’s) within a few weeks.

For our applications a T800 transputer has about the speed of a 80386 based 20MHz
PC with 80387 coprocessor and Weitek mW 1167 accelerator or 12 times the speed of an
AT03 with 80287 coprocessor or 1/3 of the speed of a Cyber 855 mainframe.

It has been mentioned that almost the whole computation time is needed for the solu-
tion of the overdetermined system of equations by an updating routine. As a consequence
only the updating procedure needs to be analyzed and paralleling. Only an upper trian-
gular matrix U needs to stored in a vector A. U is updated starting with the first column,
from top to bottom, as indicated in figure 1. Finally U is solved by back substitution.

Figure 1 Splitting of the triangular matrix U

To parallelize this procedure for N transputers, U is simply splitter in N trapezoidal
parts T1,T2,...TN (see figure 1) with a similar number of elements stored in the vectors
A1,A2,...AN. When a new row (a new equation) stored in a vector V1 has to be updated,
the first transputer (which stores T1) takes it, updates T1 and gives a (shorter) vector
V2 to the second transputer and so on. Since the computation time is approximately
proportional to the number of elements. the computation time for each of the transputers
is almost the same.

Of course it is impossible with N transputers to get N times the speed of a single
one. On the first (root) transputer not only the matrix T1 is computed but also the whole
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input /output, the calculation of the elements of the vectors V1 and so on has to be done.
For this reason less memory for the storage of T1 is available than for T2, T3;...TN. At
the beginning only the first transputer is working. Later on the other transputers start
working (pipeline architecture). Even if all transputers are busy, one updating step will
never need exactly the same time for every transputer. For these reasons the computation
time depends not only on the number of transputers but also on the problem to be solved.

The splitting of the matrix U has another important advantage: It allows to solve
problems with an almost unlimited number of unknowns simply by adding enough trans-
puters (Cards with up to 20 T800 transputers with IMBytes memory each are available
for AT compatible PC’s.). For the present paper a board with four T800 transputers with
4MByte memory each has been used in a portable Toshiba T3200 PC. Our tests showed
that for big problems such a portable machine needs less execution time and - since it is a
single user machine - much less turn-around time than a Cyber 855.

Examples

To compare the speed some simple examples with different sizes have been selected. The
examples have been solved with 1, 2, and 4 transputers. To get an impression of the ef-
ficiency of the parallelization one should use somehow similar problems. We have chosen
the scattering of a plane wave on 1 or several metallic cylinders of finite length (half wave-
length) and thickness (radius equal to 1/7 of the length). The aim of these computations is
the comparison of the speed of different machines and configurations rather than to show
the speed and practical value of the programs. Figure 2 shows the magnetic field for the
case of five cylinders.
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Figure 2 Magnetic field in the xz- and xy-plane for a plane wave incident from the right hand
side on five thick cylinders.

In order to compare the computation time of different problems, the size S of a problem
is defined as the number of equations M multiplied by the square of the number of unknowns

—-107—



N (divided by 10.0E6 to get reasonable numbers). It is expected that the computation
time of large problems is approximately proportional to S. For this reason the computation
time relative to S is shown in figure 3. Two points should be mentioned: 1.) The relative
computation times (computation time divided by the size S of the problem) should decrease
for increasing size of the problem. This is true for any number of transputers. But on
workstations this is the case only for problems small enough to fit in the central memory.
2.) The turn- around time for large problems on workstations (and mainframes) may be
much higher than the computation time even if only one single job is running. These
effects are due to the paging.
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Fiqure 3 Relative computation times for examples of different size on 1, 2, 4 transputers and
SUN 3/260, SUN 4/110 workstations with floating point accelerators.
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