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1. Introduction

Asymptotic expressions of the edge-excited surface currents on a convex face of an impedance wedge
are derived by using Maliuzhinets’ and Fock’ theories according to the method of the synthesis developed
by Michaeli [I. The edge of the wedge is assumed straight, and the incident electromagnetic wave is
locally plane and normal to the edge. The angle of incidence includes the case where the penumbra
regions of the edge and surface diffraction overlap.

An asymptotic description of electromagnetic field diffracted by an impedance curved wedge is impor-
tant since it may provide a canonical problem of high frequency diffraction theory. Michaeli derived a
relatively simple form of solution for the edge-diffracted surface currents of perfectly conducting wedge
by using the concept of spectral theory of diffraction. His discussion is focused on the case where the
penumbra regions of the edge and surface diffraction overlap, where ray interpretation of the diffraction
is difficult. When an angle of incidence is far from the shadow boundaries, it is possible to obtain the
solution by using the equivalent current method used in the area of the GTD. Molinet [?! inferred the so-
lution for impedance curved wedge from the Michaeli’s results, but his result seems to be incomplete. He
used the diffraction coefficients of perfectly conducting wedge and effect of surface wave is missing, which
is excited under some condition. In this paper, the expression of the edge-diffracted surface field on an
impedance curved wedge are derived by applying the Maliuzhinets’s theory for straight impedance wedge
combined with the Fock’s theory for curved surface. The synthesis of the solution follows Michaeli’s pro-
cedure. The results can be used as the canonical problem of physical theory of diffraction with transition
currents, which we are developing. The edge diffracted field is interpreted as a spectrum of inhomo-
geneous plane waves, and the surface field excited by each spectral plane wave is obtained by analytic
continuation of the Fock function into complex space. In contrast to the case of perfectly conducting
wedge, the contribution due to the surface wave excited at the edge must be added to the edge diffracted
field. The results reduce to those of Michaeli for perfectly conducting wedge when the surface impedance
approach zero.

2 Derivation of Solution

Consider plane wave incident to the curved impedance wedge, as described in Fig.1. The z— components
of electromagnetic fields of an incident plane wave is given by
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where (p, ¢) are the cylindrical coordinates of the observation point (x,y). This wave strikes the edge
and produces the surface wave and diffracted field. The interaction of the direct incident wave with the
curved face may be treated separately and is omitted here. The surface field excited at the edge of an
impedance wedge is given by 3[4
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where F?* denotes E5™ for sinf, = — and HJ" for sinf; = (, ¢ is the normalized surface impedance
of the wedge face. H(z) = is the Heaviside’s unit step function, and H(z) =1 for x > 0 and H(z) =0
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for z < 0. 20 = ¢,, is the exterior wedge angle and p = — = U(z) is given by the product of four
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Maliuzhinets functions 3. If the surface pole of the wedge function representation Bl is denoted by
a’ =1 +0L+¢ =0+ jai*, A > 0 provided that the condition
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is satisfied and otherwise A < 0. When plane wave exp[—jk(z cos{ + ysin¢)] is incident to the curved
impedance surface, the surface magnetic fields are obtained [®! by using the Fock’s theory. Since the
surface field is intepreted as an inhomogeneous plane wave with complex wavenumber the field on the
curved face excited by the surface wave is given by
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where a is the radius of the curvature of the curved face, ¢ is the distance from the edge along the face
directed normal to the edge, wa(7) is the Airy function of Fock type, w)(7) is its derivative with respect
to 7. The contour I' is shwon in Fig. 2.

The contribution of the edge-diffracted wave to the surface field on the convex impedance face is
obtained by using the spectral theory of diffraction. The result is written as
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The contour C is shown in F.2. where

—(s/m)—m] w4+ (s/m)—do V[P+(s/m)—7] m—(s/m)+¢o
il ) = m\/_/ { V@ gy " 2n EEETCErD o }
3
X exp [_j§ — st} ds (6a)
[®+ (s/m) — 7] 2sind 7 — (s/m) + ¢o 83
Gao(1, ¢ \/_/ T(@ — o) o si; 0, cot 5 exp l:—jg — st] ds (60)

1
(i) When |7 — ¢o| > —
m

The integrand of G1(7, ¢) is expanded by the Taylor series and truncated it by the second term. Then
G1(7, ¢) becomes linear combination of the integral representation of the Airy integral wq(7) and its

2



derivative w5 (7). Then the tangential components of the magnetic field is given by
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Tt is noted that W (r,p) ~ —l’wz(T) and Wy(T,q,p) =~ —lVO(’T, q) for large value of p. Thus the solution
p p
near the shadow boundary can be recovered from the ray representation for the region far from the
shadow boundary by substituting jpW(r, ¢, p) for Vo(7,q).
1
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This is the case where the penumbra regions of the edge and surface diffraction overlap. Evaluation
similar to the case (i) leads to the results of the magnetic field.
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3 Some Remarks on Numerical Computation

Thus the problem reduces to compute three kinds of functions given by Vy(z,q), Up(x,q) and Wy
(z,q,u). Loganl® derived the approximate expressions Vy(z,q) and U,(x,q) for the functions Vo (z,q)
and Up(x,q). The corrections Vi(x,q) = Vo(x,q) — Vo(z,q) and U.(x,q) = Up(x,q) — Us(x,q) can be
transformed into a form convenient for numerical computation. The final forms for the functions Vy(z, q)
and Uy(z, q) are given by
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where T is an aribtrary large value, 8 denotes the real part of, z = 2
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x, Q = qexp <—j§> and

w(z) is the error function defined by
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The Airy functions Ai(z) and its derivatives of the complex arguments can be computed by using the
relations between the Airy and the modified Bessel functions.
According to the Michaeli’s procedure, the function Wy(z, ¢, ) can be transformed into
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where I5(x,y) is the incomplete Airy function. The definition of Ir(z,y) and its asymptotic expression
for large value of y are given by
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Using the properties of Ir(z,y) described in [7] and the above asymptotic expansion, Iz(x,y) can be
computed numerically for any values of x and y.

4  Conclusion
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We derived the expressions for the surface fields of an impedance curved wedge by applying the theories
of Fock for curved surface and Maliuzhinets for impedance wedge. To construct the solution, we use the
concept of the spectral theory of diffraction according to Michaeli. The surface fields are expressed as the
combination of three kinds of functions Uy(z, q), Vo(x, q) and Wy(z, ¢, u) and these are transformed into
to the forms convenient for numerical computation. The development of the numerical codes for these
functions are under study.
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