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1.  Introduction
The problem of converting the physical optics (PO) surface integral to  line integral has had a
very long history. More recently, there are two leading approaches to convert PO surface
integral into line one in the field of electromagnetics including exact analysis [1-3] and
method of equivalent currents(MEC) [4-8 ]. As is expected, the exact solution is too
complicated, moreover, it just can be applied for limited structures and sources. The MEC, on
the other hand, generally suffers from false singularities out of Keller cone which depend
upon the direction of the coordinate of inner integration on the surface to edge integral
reduction [5,7]. In order to overcome the difficulty, several approaches have been proposed
which include introducing Fresnel integral [6], optimum direction [7] and modified edge
representation (MER)[8]. In this paper, an alternative diffraction analysis is presented to
convert the PO surface integral to line one for planar scatterer. It is based upon field
equivalence principle and integration is analytically conducted provided that the incidence on
the edge behaves as the local spherical wave.

2. PO diffraction field in terms of line integral
The total field by PO from a planar scatterer S shown in Fig.1  is given as follows
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where ar
r

is the position vector on the surface α .  The superscript )(refinc=β  indicates the
component associated with the real source (image) .

In order to reduce the surface integral to line one, we construct the closed surface S1
'  by

adding the scatterer S with two complimentary surfaces S1  and S1,∞ . S1  is on  the shadow
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Fig.1 Scattering geometry for   planar scatterer
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boundary of the source whose outward unit normal vector is denoted by $n1  shown in Fig.2(a).
S1,∞  caps it at infinity. Applying field equivalence principle (FEP) for the source and the

surface '
1S  and using the radiation condition for S1,∞ ( 0)(
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Similarly, by using FEP for the image and the surface 2S +S+ ∞,2S , where 2S  is on the
reflection boundary shown in Fig.2(b), we can get the following relation.
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where GOE
r

 is the electrical field from the image.
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 on the S and Eqs. (3-4 ) we obtain
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then  PO diffraction field can be written as

)()(
21 P

ref
SP

inc
S

d rErEE
rrrrr

+−= ( 6)
Consequently, the original PO surface integration is rigorously deformed in those  on shadow
and reflection boundaries. Similar techniques were successfully used to evaluate the aperture
field integration method [9] and to derive the uniform PO diffraction for 2D problems[10].
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Fig.2  Integration surfaces for PO diffraction field

  Now, the field from the source incident on S1  is assumed to be local spherical wave,
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, where $k i  is the incident   direction. The radiation fields  are assumed as
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where  r '  is the distance between the source and the point of integration.
The source locates at  the origin of the local coordinate system shown in Fig.2(a). The field
from the currents on the surface S1  can be written as
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The above surface integration is conducted along r '  analytically while numerically along t.
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Taking the same procedures as those for the currents on the source S1  from the source, we can
obtain the field associated with the currents on the surface S2  from the image as ;
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where cos $ $βref rk r= ⋅ 2 , $kr  is the propagation direction of GO ray.

For far field observer, $ $ $r r r1 2 0= = , where ',/)'(0̂ rrRRrrr
rrrr

−=−= , 
r
r  and 

r
r '  are the

position vectors of the point of observation and of a point on the rim of the planar scatterer.
The PO diffraction field in (6) can be expressed  in terms of  the line integral as
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By using the relations of GOiGOi EtEtHtHt
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The procedures for deriving the new EECs are mathematical; we do not need any asymptotic
methods such as the stationary phase method which is popularly used in the high frequency
diffraction analysis. The expression of the PO diffraction field is very similar to that of the
MEC[4-8], so 

r
Ie  and 

r
M e  shown in equation (15) are defined as the new EECs, respectively .

The coefficients in Eq.(15) are determined by incident and reflection directions, which is
independent of $t . Their orientation is not along the tangent unit vector $t  while that for the
other EECs is identical with $t . It is true that the EECs can be cast into the vector along $t , so
that we can compare them with available ones.  The most important advantage of the new
EECs is that 

r
I e  and 

r
M e  have no fictitious singularities except the real ones at shadow and

reflection boundaries. The singularities are keller style which appear in all diffraction analysis
addressing this work.  The expressions of the new EECs are much simpler in comparison with
other works, only two cosine functions are used, it is believed that the solution costs much
smaller CUP time.

3. Numerical check
The new solution predicts very accurate results like the
POEECs[7] and MER[8] in the case that incident source is
much far away from the scatterer including plane wave. We
focus on the comparison when the source is not far from the
scatterer. PO field can be numerically obtained by directly
integrating the PO currents on the scatterer as the reference
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 Fig.3 Scattering Geometry of disk



“PO-exact”, hereafter. Let us consider the radiation field of electric dipole waves from a flat
disk depicted  in Fig.3, in which a  is the radius of the disk, the dipole locates on z-axis and is
in the distance d  from the disk,θ  and ϕ  represent the observation direction. In the following
calculation, we set a = 5λ  and °= 0ϕ , respectively. Figures 4 show the results obtained by
different methods for a z-directed dipole source with different values of d . When λ5.2=d ,

λ25.0=d , better agreement between the new analysis discussed in this paper and the exact
solution is observed except small discrepancies around the reflection boundary, while  the
POEECs [7] is deviating from the exact one in wide observation regions. MER, empirically
developed,  predicts very accurate results which are not included in the figures. Extensive
numerical results show the POEECs discussed in this paper is more accurate than the POEECs
[7] which was discussed in [11] in more details, but it is worse than MER[8]. The reason and
the relationship between the new analysis and available works will be investigated.

(a) a = 5λ and  λ5.2=d                                  (b) a = 5λ and λ25.0=d
Fig.4 Accuracy check of the new diffraction analysis   for a disk (z-directed dipole)

4. Conclusion
A novel  diffraction analysis has been presented to convert PO surface integral into line one in
order to calculate PO field efficiently. We first apply for field equivalence principle to extract
the PO diffraction field from total PO field in the form of the surfaces integration on the RB
and SB, then convert the two surface integrals into line ones by using simple mathematics
treatments. Finally the PO diffraction field is expressed by local parameters at the edge of the
scatterer . The new diffraction analysis only suffers from the real singularities on SB and RB,
its accuracy is checked by numerical results, and its superiority is demonstrated. The analysis
can be applied to predict the diffraction field from curve surfaces.
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