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1 Introduction

'To analyze EM radiated fields in various geometries, the dyadic Green’s function (DGF) tech-
nique provides a straightforward way. This paper represents the dyadic Green’s functions in a
multilayered spheroidal structure. In terms of the spheroidal vector wave functions, the DGE’s
are formulated in a similar form as the unbounded DGF given earlier under the spheroidal
coordinates where the nonsolenoidal contribution is extracted. Multiple reflections and trans-
missions are considered in the construction of the scattering DGI’s. Various possibilities that
the source distribution and observation point are respectively located in an arbitrarily assumed
region of the multilayered structure are considered in the formulation. Applications of the DGF’s
in spheroidal structures presented here can be found from many practical problems such as the
EM waves inside and outside a stratified prolate dielectric radome utilized to protect airborne
or satellite antennas from the environmental effects [1], handy phone radiation near the layered
spheroid-shaped human head [2] and rainfall attenuation of microwave signals due to oblate
raindrops [3].

2 Fundamental Formulation

To analyze the EM fields in spheroidal structures, we consider a prolate spheroidal geometry of
multilayers as shown in Fig. 1. Here 7 is an angular coordinate (ranged within —1 < 7 < 1),
€ is a radial one (ranged within 1 < £ < 00), ¢ is an azimuthal one (ranged within 0 < ¢ <
27), and each spheroidal interface is assumed to have the same interfocal distance d. Oblate
spheroidal problems can be analyzed by a similar procedure presented here or by the symbolic
transformation, £ — 4, and ¢ — Fic where ¢ = %kd (k is the wave propagation constant).
The ranges of 7 and & in the oblate spheroidal system belong to 0 <7 <1 and —oo < £ < 00,
respectively.

Assume that the space is divided by N — 1 spheroidal interfaces into N regions, as shown
in Fig. 1. The spheroidally stratified regions are labeled respectively as f =1,2,3, ---, N. The
EM radiated fields, E; and Hy in the fth (field) region (f =1,2,3, ---, N) due to the electric
and magnetic current distributions Js and M located in the sth (source) region (s = 1,2,3,

-+, N), can be expressed in terms of integrals containing dyadic Green’s functions as follows
(4]:
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where the prime denotes the coordinates (£',7,¢’) of the current sources Js and M, and V
identifies the volume occupied by the sources.
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Figure 1: Geometry of a multilayered prolate spheroid under coordinates (&, 1, ¢)

The DGF @gf\} (r, ') can be obtained from the _@%j)(r, 7’} by making the simple duality
replacements E -~ H, H - -E, J > M, M — —J, 4 — ¢, and ¢ — pu. Therefore, only the

DGF, @gj)(r, r’), is represented here to avoid unnecessary repetition.

3 Unbounded Dyadic Green’s Functions

In terms of the defined spheroidal vector wave functions, in explicit bi-vector form, the un-

bounded electric dyadic Green’s functions are given, for ¢ z & as:
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where E denotes the spheroidal radial unit vector, §(r — r’) is the three-dimensional Dirac delta
function, and the prime denotes the coordinates (£',7/,¢'). The first term of FEq. (2) stands
for the nonsolenoidal contribution and can be obtained by using the same method given by Tai
[4]. The spheroidal vector wave functions Mgle(c,r) and Nﬁfr‘l)n (¢,r) (@ = Z,y,Z) for the
construction of Green’s dyadics are defined in ferms of the scalar eigenfunctions as follows:
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The explicit forms of the spheroidal vector wave functions under the alternative spheroidal
coordinates system are given by Flammar in [5].

4 Scattering Green’s Dyadics

Using the principle of scattering superposition, the dyadic Green’s function can be considered
as the sum of the unbounded Green’s dyadic and a scattering Green’s dyadic to be determined.
The Green’s dyadic is therefore given by [4]:
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where the scattering DGEF ngsz (ry7') describes an additional contribution of the mmltiple re-
flection and transmission waves in the presence of the boundary produced by the dielectric media
while the unbounded dyadic Green’s function, G gjo(r, '), given by (2) represents the contri-
bution of the direct waves from radiation sources in an unbounded medium. The superscript
(fs) denotes the layers where the field point and the source point are located, respectively, and
the subscript s identifies the scattering dyadic Green’s functions.

When the antenna is located in the sth region, the scattering dyadic Green’s function
in the fth regions must be of the form similar to that of the unbounded Green’s dyadic.
To satisfy the boundary conditions, however, the additional spheroidal vector wave functions
M ijl)n(c, €) should be included to account for the effects of multiple transmissions and reflec-

tions. For the ease of determination of the scattering coefficients, the sets of vector wave func-
tions, M i(l) (c, £) and N ii(:il (¢,€), are used in the construction of the scattering DGF’s.
o ?

ME® ( ¢, §) and N ( ) (c, £) are defined as follows:
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where X denotes either M or IN.

For a single-layered spheroidal geometry, the dyadic Green’s functions have been given by
Li et al. [6] . Therefore, the scattering dyadic Green’s functions in each region of a multilayered
spheroidal structure can be formulated in a similar fashion.
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Here dyn and 71 are Kronecker delta functions. ¢s = %—ksd and ¢y = %k rd, where k; and ky are
respectively the wave propagation constants in which the source and field points are located.
(Fe,xy,2)(M,N) (@, ty,2)(M,N)
Af mn and Bf
O
the boundary conditions. Because of the nonorthogonality of the spheroidal wave functions, these

unknown coeflicients are coupled to each other. By using the method of functional expansion
[6], the coupled unknowns can be determined from the matrix equation system exclusively.

are unknown scattering coeflicients to be determined from

Sufficient computational accuracy can be achieved by properly choosing the truncation number
of the matrix. Elements of the matrix equation system are provided in detail in [6].

5 Discussion and Conclusion

In this paper, the dyadic Green’s functions in multilayered spheroidal structures are [ormulated
in terms of appropriate vector wave eigenfunctions and coordinate vectors &, ¥y, and Z. The
representation and formulation of DGF’s in the spheroidal coordinates are made in a different
eigenfunction expansion, as compared with those conventional formulations in planar, cylindri-
cal, and spherical coordinates. The nonsolenoidal term of the electric dyadic Green’s function
is extracted by following the same procedure given by Tai [4]. The unknown coefficients of the
scattering dyadic Green’s functions, even coupled to each other, can be determined from the
matrix equation system using the functional expansion technique.
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