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1. Introduction
Chiral medium has attracted attention due to many associated interesting phenomena in optical and
electromagnetic activity and its potential applications in various fields [1]. Recently, the phenomena
of wave interaction with chiral structures such as chiral sphere [2], stratified chiral slab [3], and chiral
grating [4] [5] have been examined theoretically.

The electromagnetic field radiated from waveguide horns and laser cavities is an approximately
beam-like field. Thus, propagation and scattering problems of a beam field are of practical importance.
One of the methods for treating the beam field is the complex-source-point method [6] [7].

In this paper, we investigate the scattering of the Hermite-Gaussian beam by a chiral sphere. The
Hermite-Gaussian beam can be expressed as the superpositions of multipole fields at complex source
points [8] in the paraxial region. The electromagnetic fields are expanded in terms of the vector spherical
wave functions [9] [10], and the unknown coefficients for the internal field and the scattered field are
determined by the boundary conditions on the surface of the chiral sphere. As numerical examples, the
near fields for the lowest-order incident beam are calculated and compared with those for a plane wave
incidence.

2. Hermite-Gaussian beam generated by multipole fields at a complex source point
For the scattering of a beam field, the complex-source-point method is one of the useful methods. The
time factor exp(−iwt) is suppressed throughout. The electromagnetic fields radiated from the source
point located at the complex point (−x0,−y0,−z0 + ib) are represented as

E =
i
wm∂

∇×∇× A (1)

H =
1
m
∇× A (2)

The vector potential A is given by

A = x̂
eik0R

ik0R
(3)

where R(=
√
(x + x0)2 + (y + y0)2 + (z + z0 − ib)2) is the distance between the observation point (x, y, z)

and the source point, x̂ is the unit vector in the polarization direction and k0(= 2p/l) is the wavenumber
in free space. The branch of R is chosen such that R → z as z → ∞ in order to satisfy the radiation
conditions. b is related with the smallest spot size w0(=

√
2b/k) of the lowest-order beam field. When

the observation point is far away from the branch point and in the paraxial region, the electromagnetic
fields become Gaussian beams [10].
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The Hermite-Gaussian beam field can be generated by the multipole fields located at the complex
source point as follows [7]:

Am,n = x̂
∂m+n

∂xm∂yn
eikR

ikR
(4)

The multipole fields are related with the complex beam proposed by Siegman [11], and the complex beam
is related with the conventional one [8]. By using these relations, the conventional Hermite-Gaussian
beam field ym,n is expressed as a superposition of a finite number of multipole fields under the paraxial
approximation [8]:

x̂ym,n ∼ kb e−kb

√
2m!n!
p

eik(z+z0)
[m/2]∑
p=0

[n/2]∑
q=0

2−p+q(−w0)m+n−2(p+q)

w0 p!q!(m− 2p)!(n− 2q)!
Am−2p,n−2q (5)

Therefore, we investigate the scattered field for a multipole field Am,n in the next section.

3. Scattering by a chiral sphere
Let a multipole field Am,n be incident upon a chiral sphere shown in Fig. 1. The incident beam has the
smallest spot size w0 at the beam waist (−x0,−y0,−z0). The chiral sphere (with radius a) has relative
permitivity ∂r, relative permiability mr, nonreciprocity parameter c and chirality parameter k.

The constitutive relations for a nonreciprocal chiral medium are given by [1]

D = ∂0∂rE + xH (6)

B = zE + m0mrH (7)

where

x = (c + ik)
√
∂0m0 (8)

z = (c− ik)
√
∂0m0 (9)

∂0 and m0 are permitivity and permiability in the free space, respectively. The nonreciprocity parameter
and chirality parameter are governed by the following inequality,

c2 + k2 < ∂rmr (10)

The multipole field Am,n can be expanded in terms of the vector spherical wave functions. By
using this expansion and Eqs. (1) and (2), the incident electromagnetic fields are obtained as follows
[10]:

Einc = iw
+∞∑
l=1

l∑
−l

[
a(h)(m, n : l, m)M(s)l,m(k0, r) + b(h)(m, n : l, m)N(s)l,m(k0, r)

]
(11)

Hinc =
ik
m

+∞∑
l=1

l∑
−l

[
a(h)(m, n : l, m)N(s)l,m(k0, r)− b(h)(m, n : l, m)M(s)l,m(k0, r)

]
, h and s = 1, 2 (12)

where

M(s)l,m(k, r) = ∇×
[
rZ(s)l (kr)Y m

l (q, f)
]

(13)

N(s)l,m(k, r) =
1
ik
∇× M(s)l,m(k, r) (14)

and the superscripts h and s are determined by the addition theorem. The functions Z(1)l (kr) and Z(2)l (kr)
denote, respectively, the spherical Bessel function jl(kr) and the first-kind spherical Hankel function
h(1)l (kr). The function Y m

l (q, f) is defined by [9]

Y m
l (q, f) =

√
2l + 1

4p
(l − |m|)!
(l + |m|)! P|m|

l (cos q) eimf (15)

and P|m|
l is the associated Legendre function of degree l and index m. The coefficients a(h)(m, n : l, m)

and b(h)(m, n : l, m) can be obtained by using the recurrence relations [10].
For a chiral sphere, there exist two eigenvalues k+ and k− given by

k± = w
√
∂0m0

(√
∂rmr − c2 ± k) (16)



The electric field in the sphere can be expanded in terms of the vector spherical wave functions with the
arguments k± as

Echi =
+∞∑
l=1

l∑
m=−l

[
al,m P(1)l,m(k

+, r) + bl,m Q(1)l,m(k
−, r)

]
(17)

where

P(s)l,m(k, r) =M(s)l,m(k, r) + i N(s)l,m(k, r) (18)

Q(s)l,m(k, r) =M(s)l,m(k, r)− i N(s)l,m(k, r) , s = 1, 2 (19)

The scattered field of the multipole field Am,n are expressed in terms of P(2)l,m(k0, r) and Q(2)l,m(k0, r),

Esct =
+∞∑
l=1

l∑
m=−l

[
cl,mP(2)l,m(k0, r) + dl,mQ(2)l,m(k0, r)

]
(20)

The boundary condition is for the tangential electromagnetic fields. The tangential electromagnetic fields
of the incident beam can be obtained as follows,

x̂ × Einc =
+∞∑
l=1

l∑
m=−l

[
ainc

l,m Gl,m(q,f) + b
inc
l,m Rl,m(q,f)

]
(21)

x̂ × Hinc =
+∞∑
l=1

l∑
m=−l

[
ginc

l,m Gl,m(q, f) + d
inc
l,m Rl,m(q,f)

]
(22)

where

Gl,m(q, f) =
1√

l(l + 1)
∇S1Y

m
l (23)

Rl,m(q, f) = x̂ × Gl,m (24)

The functions Gl,m(q,f) and Rl,m(q, f) are the tangential basis functions and form an orthonormal basis on
the unit sphere S1 [9]. The coefficients ainc

l,m, binc
l,m, ginc

l,m, and dinc
l,m are expressed in terms of a(h)(m, n : l, m)

and b(h)(m, n : l, m) by using Eqs. (11) and (12). The tangential electromagnetic fields inside and outside
the sphere can be obtained in the same way. From the continuity of the tangential electromagnetic field,
we obtain the unknown coefficients al,m, bl,m, cl,m, and dl,m.

4. Numerical results
In this paper, the incident beam is assumed to be the lowest-order beam field with a beam waist located at
the focal point of a sphere. The focal length f used here is the one which is defined by Gaussian optics.
The far-field divergence angles of laser are 13◦×24◦ [12]. Since the angular beam spread is related with
the spot size of the circular beam, the average spot size can be obtained. The sphere has the refractive
index

√
∂r = 2.0 and the relative permiability mr = 1. The other parameters are l = 1.55mm, f = a,

c = 0, and the smallest spot size of the incident beam is 1.05mm.
Figures 2 and 3 show the scattered near field of the lowest-order incident beam by a chiral sphere

(for several different values of the chirality parameter k) for the cases a = l and a = 1.3l, respectively.
The chirality parameter k = 0 corresponds to a dielectric sphere. The observation plane is another focal
plane. From these figures, it is found that the output field of the incident beam are focused and the
effective refractive index for a chiral sphere with radius a = l is smaller than that for a dielectric sphere
[13] since the output fields for a chiral sphere are more spreaded than that for a dielectric one. Figures
4 and 5 show the scattered near field by a plane wave for a chiral sphere with the same parameters. We
also found that for a chiral sphere the diffraction effect for the plane wave is larger than that for the beam
incidence.

5. Conclusions
The scattering of a Hermite-Gaussian beam by a chiral sphere has been analyzed by using the relations
between the multipole fields and the conventional Hermite-Gaussian beam. The scattered near field of
the lowest-order incident beam by a chiral sphere has been calculated numerically and compared with



that of a plane wave incidence. We found that the effective refractive index for a chiral sphere (with
radius of 1 wavelength) is smaller than that for a dielectric sphere.
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Fig. 1 Geometry of the problem
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Fig. 2 Scattered near field of the beam field for
the radius a = 1.0l
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Fig. 3 Scattered near field of the beam field for
the radius a = 1.3l
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Fig. 4 Scattered near field of the plane wave
for the radius a = 1.0l
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Fig. 5 Scattered near field of the plane wave
for the radius a = 1.3l


