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1. Introduction

Chiral medium has attracted attention due to many associated interesting phenomena in optical and
electromagnetic activity and its potential applications in various fields [1]. Recently, the phenomena
of wave interaction with chiral structures such as chiral sphere [2], stratified chiral slab [3], and chiral
grating [4] [5] have been examined theoretically.

The electromagnetic field radiated from waveguide horns and laser cavitiesis an approximately
beam-like field. Thus, propagation and scattering problems of a beam field are of practical importance.
One of the methods for treating the beam field is the complex-source-point method [6] [7].

In this paper, we investigate the scattering of the Hermite-Gaussian beam by a chiral sphere. The
Hermite-Gaussian beam can be expressed as the superpositions of multipole fields at complex source
points[8] in the paraxial region. The electromagnetic fields are expanded in terms of the vector spherical
wave functions [9] [10], and the unknown coefficients for the internal field and the scattered field are
determined by the boundary conditions on the surface of the chiral sphere. As numerical examples, the
near fields for the lowest-order incident beam are calculated and compared with those for a plane wave
incidence.

2. Hermite-Gaussian beam generated by multipole fields at a complex source point

For the scattering of a beam field, the complex-source-point method is one of the useful methods. The
time factor exp(—iwt) is suppressed throughout. The electromagnetic fields radiated from the source
point located at the complex point (—Xg, —Yo, —Zo + ib) are represented as
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The vector potential A isgiven by
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where R(= /(X + X0)2 + (Y + Y0)? + (2 + Zo — ib)?) is the distance between the observation point (x, y, 2)
and the source point, X is the unit vector in the polarization direction and ko(= 27/ 1) is the wavenumber
in free space. The branch of Ris chosen suchthat R — zasz — oo in order to satisfy the radiation
conditions. b is related with the smallest spot size wo(= v/ 2b/K) of the lowest-order beam field. When
the observation point is far away from the branch point and in the paraxial region, the electromagnetic
fields become Gaussian beams [10].


高田 潤一



The Hermite-Gaussian beam field can be generated by the multipole fields |ocated at the complex
source point asfollows|[7]:
R UV eikR
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Themultipolefields are related with the complex beam proposed by Siegman[11], and the complex beam

is related with the conventional one [8]. By using these relations, the conventional Hermite-Gaussian

beam field y,, is expressed as a superposition of a finite number of multipole fields under the paraxial
approximation [8]:
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Therefore, we investigate the scattered field for amultipolefield A, ,, in the next section.

;1 2p,y—2q (5)

3. Scattering by a chiral sphere
Let amultipole field A, be incident upon a chiral sphere shown in Fig. 1. The incident beam has the
smallest spot size wy at the beam waist (—Xo, —Yo, —2p). The chiral sphere (with radius a) has relative
permitivity &, relative permiability u,, nonreciprocity parameter y and chirality parameter «.

The consgtitutive relations for a nonreciprocal chiral medium are given by [1]

D = gogE + €H (6)
B = E + uourH (7
where
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go and ug are permitivity and permiability in the free space, respectively. The nonreciprocity parameter
and chirality parameter are governed by the following inequality,

Y+ K< e (10)

The multipole field A, can be expanded in terms of the vector spherical wave functions. By

using this expansion and Egs. (1) and (2), the incident electromagnetic fields are obtained as follows
[10]:

+oo |
E®=in) Y [a(”)(,u, v L, MM, ko, 1) + B, v - 1, m) N, (ko, r)] (11)

=1 —I

Hine 'kzz[ Diaty v+ 1, )N, (o, 1) — B2, v < 1,m) M S, e, r)} pands=1,2 (12)

I=1 —I
where
MOk, 1) = V x [ rZ k)Y@, ¢)] (13)

NSk 1) = v x M{Z (k1) (14)

and the superscriptsn and s are determined by the addition theorem. The functions ™" (kr) and Z® (kr)
denote, respectively, the spherical Bessel function j;(kr) and the first-kind spherical Hankel function
hl(l)(kr). The function Y™(6, ¢) is defined by [9]
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and F’I‘m| is the associated Legendre function of degree | and index m. The coefficients ™ (u,v : 1, m)
and 8 (u, v : |, m) can be obtained by using the recurrence relations [10].
For achiral sphere, there exist two eigenvaluesk* and k— given by

kE=w 30,110( erptr — x* + K) (16)



The electric field in the sphere can be expanded in terms of the vector spherical wave functions with the
argumentsk* as
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The scattered field of the multipolefield A, are expressed in terms of p(2> ) (ko, 1) and Q(2) (ko,T),
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The boundary conditionisfor thetangential electromagneticfields. Thetangential electromagneticfields
of theincident beam can be obtained as foIIows
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where
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Gim(0,¢) = mvlel (23)
Rim(0,¢) = X x Gim (24)

Thefunctions G (6, ¢) and R; m(6, ¢) arethetangential basisfunctionsand form an orthonormal basison
the unit sphere S [9]. The coefficients oS, 8%, %¢, and 6" are expressed in terms of ™ (u,v : |,m)
and B (u,v : 1, m) by using Egs. (11) and (12). The tangenti al electromagnetic fields inside and outside
the sphere can be obtained in the same way. From the continuity of the tangential electromagneticfield,

we obtain the unknown coefficients ay m, by m, ¢ m, and d m.

4. Numerical results
In this paper, the incident beam is assumed to be the | owest-order beam field with abeam waist located at
the focal point of a sphere. The focal length f used here is the one which is defined by Gaussian optics.
Thefar-field divergence angles of laser are 13° x 24° [12]. Since the angular beam spread isrelated with
the spot size of the circular beam, the average spot size can be obtained. The sphere has the refractive
index /e = 2.0 and the relative permiability 4, = 1. The other parametersare A = 1.55um, f = a,
x = 0, and the smallest spot size of the incident beam is 1.05um.

Figures 2 and 3 show the scattered near field of the lowest-order incident beam by a chiral sphere
(for severd different values of the chirality parameter «) for the casesa = A and a = 1.3A, respectively.
The chirality parameter x = 0 corresponds to a dielectric sphere. The observation plane is another focal
plane. From these figures, it is found that the output field of the incident beam are focused and the
effective refractive index for a chiral sphere with radiusa = A is smaller than that for a dielectric sphere
[13] since the output fields for a chiral sphere are more spreaded than that for a dielectric one. Figures
4 and 5 show the scattered near field by a plane wave for a chiral sphere with the same parameters. We
also found that for achiral spherethe diffraction effect for the plane wave islarger than that for the beam
incidence.

5. Conclusions

The scattering of a Hermite-Gaussian beam by a chiral sphere has been analyzed by using the relations
between the multipole fields and the conventional Hermite-Gaussian beam. The scattered near field of
the lowest-order incident beam by a chiral sphere has been calculated numerically and compared with



that of a plane wave incidence. We found that the effective refractive index for a chiral sphere (with
radius of 1 wavelength) is smaller than that for a dielectric sphere.
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Fig. 1 Geometry of the problem
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Fig. 3 Scattered near field of the beam field for
theradiusa = 1.3

Fig. 2 Scattered near field of the beam field for
theradiusa = 1.0A
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Fig. 4 Scattered near field of the plane wave Fig. 5 Scattered near field of the plane wave
for theradiusa = 1.0A for theradiusa = 1.31



