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1. Introduction

An analysis of the electromagnetic (EM) plane wave scattering from open-ended waveguide cavity conågu-

ration is important task in radar cross section (RCS) prediction of complex targets. Many practically useful

approaches have been developed to analyze this kind of problem, such as, waveguide modal analysis, shooting

and bouncing rays, Gaussian beam shooting method, moment method with a connection scheme, iterative

physical optics（IPO), progressive physical optics, and so on. The review and references of these methods

can be found in many published papers. We refer here only [1] ò [3] for saving space. It was pointed out [1]
that impedance walls can reduce the RCS of the cavities. Almost all the approaches mentioned above can

apply to the general cavities with surface impedance, but the most numerical results are devoted to verify the

validities of the proposed analytical methods and are restricted to the cavities of the perfect conductor. So it

is the purpose of this paper to investigate quantitatively how impedance wall can act for reducing the RCS

of the cavity by applying the IPO algorithm. The IPO is the method of solving the magnetic åeld integral

equation (MFIE) by using the iteration. Thus it may be interpreted as the extension of the conventional

PO to apply to the problem having the multiple reçection. The IPO is more approximate than a matrix

solution of MFIE, but it is quite accurate for electrically large cavity and is much more eécient.

The boundary integral equation (BIE) is developed for the equivalent electric currents on the interior walls

with surface impedance boundary conditions. This equation is solved by using the IPO algorithm given in

[2]. In contrast to the case of the cavity of perfect conductor, BIE of the impedance cavity contains the

second derivatives of Green's function in the integrands. How to treat this singular integrals is discussed

in [3]. The singular integrals over rectangular region can be represented by a simple elementary functions.

The monostatic RCS of the circular waveguide cavity with surface impedance interior walls is computed for

various values of surface impedance and it is found that the impedance walls are eãective for reducing the

RCS of open-ended cavities.

2. Theory

Boundary integral equation for the equivalent electric currents on the interior walls of the cavity is given

by

J(rc) = 2nÇHi(rc) + 2nÇ
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ÉÅ[nÇ J(r0c)]dS0c (1)

where
R
Sc
Ä denotes the principal value of the integral, rc and r0c are the displacement vectors of observation

and source points, respectively, ês is the normalized surface impedance of the interior walls, and boudary

condition M = ÄêsZ0(n Ç J) is used. M = E Ç n is the equivalent magnetic surface current, G0(rc; r0c) is
free-space Green's function, and n is the unit normal of the interior walls. The symbol r0 means that the
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diãerentiation operates on r0. Hi is the magnetic åeld produced by the åeld on the cavity aperture. It is

noted that the last term contains second derivatives of the Green's funciton and we evaluate them according

to Miron's analysis [4]. Eq.(1) is solved iteratively using the IPO algorithm. Once the equivalent electric

currents on the interior walls of the cavity are determined, the scattered åeld produced by the currents is

evaluated by

Es(rP ) =
ÄjkZ0
4ôR

exp(ÄjkR)
Z
Sc

f[Jc(r0c)Ä iRiR ÅJ(r0c)] +êsiR Ç [nÇ Jc(r0c)]g exp[jkr0 Åir]dS0c (2)

The monostatic radar cross section is computed from the relation

õ= 4ôR2
jEsj2
jEij2

=
k2Z20
4ô

ååååZ
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fJu(r0c)[(iíÅiu)Äês(iv Åiû)] + Jv(r0c)[(iíÅiv) +ês(iu Åiû)]g exp[jkà(í0;û0)]dS0c
åååå2
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fJu(r0c)[(iûÅiu) +ês(iv Åií)] + Jv(r0c)[(iûÅiv)Äês(iu Åií)]g exp[jkà(í0; û0)]dS0c
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à(í0; û0) = x
0 siní0 cosû0 + y0 siní0 sinû0 + z0 cosí0 (3)

where (x0; y; z0) and (u; v) are the global and localized rectangular coordinates of the discretized meshes of
the walls, respectively. The symbol (R;í;û) are the spherical coordinates of the observation point extrior to

the cavity and iò is the unit vector with the direction of increasing ò.
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3. Numerical Results and Discussion

Interior walls of the cavity is divided into small four sided meshes. Global Cartesian coordinates of the

nodes of the meshes are described X(I; J), Y (I; J), and Z(I; J) with two kinds of indices I and J , and these

data are stored in the memories of the computer. The center of each mesh is chosen to be the origin of the

localized rectangular coordintes (u; v; w). The coordinates (u; v) are on the interior walls and w is normal to

the walls. When the observation point is located inside the integral mesh, the original mesh So is changed to

rectangular mesh Sr in order to perform the integral of the last term of eq.(1) analytically. The contributions

from So Ä Sr may be computed numerically since the integrand does not contain the singularity. When the
distance between the observation and source points is not large, say kjrÄ r0j < 5, the integration over the
mesh is performed numerically by using the Gauss-Legendre quadrature of the second order, otherwise the
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integral is replaced by the integrand multiplied by the area of the mesh. To apply the Gauss-Legendre

quadrature scheme to the integral over the quadrangle with vertices (u1; v1), (u2; v2), (u3; v3) and (u4; v4),

the transformation of the variables (u; v) into (ò;ë) is made using the relationsí
u
v

ì
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4
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í
u4
v4

ì
(4)

Then the quadrangle is changed to the square.

To verify the numerical code, the RCS patterns of 7ïÇ 14ïcylinderical cavity of perfect conductor with a
çat termination since the modal solution is available [4]. The agreement is quite well. The results converge

roughly with N=3 iteration as pointed out in [2].

Fig. 4 shows the RCS patterns of the smaller 4ïÇ 4ï cylindrical cavity. Both the case of the perfect
conductour and impedance interior walls are considered. The results of perfect conductor walls are compared

with those given in [2], and are found to agree well. The normalized surface impedance are chosen to be

ê1 = 0:40 + j0:115 and ê2 = 0:351 + j0:0862. The reason of choosing the close values of impedances is to

verify the program since it is expected that the both results give close patterns. The size of the mesh of [2]

is 0:33ïÇ 0:33ï , but smaller and diãeret size 0:15ïÇ :25ï is used here. The mesh size of [2] seems to be
suécient for practical computation. It was pointed in [2] that the number of iteration N = 3 is suécient for

perfectly conducting cavities, this criterion is found to hold also for the impedance cavity.

4. Conclusion

The radar cross section of the open-ended circular waveguide cavity with impedance interior walls was

computed by using the iterative physical optics algorithm. It is veriåed that the impedance walls are

eãective for reduction of the RCS of the open-ended cavity. Since the shape of the mesh is a quadrangle,

instead of square, the numerical code developed here can be readily applied to the cavities with more complex

conåguration.
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Fig.3 RCS of open-ended cavity of perfect conductor. a = 3:5ï, L = 14ï
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Fig.4 RCS of open-ended cavity with perfect conductor walls and surface impedance walls

a = 2ï, L = 4ï. (a): õíí (b): õûû
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