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Near-field scanning on planar, circular cylindrical, and spherical surfaces
has many advantages including the possibility of accuracies seldom equalled on
far-field ranges or in anechoic chambers. The same is true of the author's
extrapolation method [1] for gain and effective area, which is the most accu-
rate method of calibrating standard gain horns. Since the data processing is
based upon the Fast Fourier "Transform,' supplemented by matrix multiplication
in the spherical case, the rigorous three-dimensional techniques described
here are extremely fast. Tens or hundreds of thousands of complex coeffici-
ents of exact global solutions (modes) of the appropriate differential equa-
tion(s) (Maxwell's in the electromagnetic case) and the associated total far
field are computed in minutes or even seconds. (The various proposed tech-
niques involving small angle, Kirchhoff diffraction, scalar, asymptotic,
and/or defocussing approximations are usually not as fast.) Further, these
methods provide a very comprehensive, rigorous, and detailed theory of near-
field analysis and measurement, with minimal assumptions, idealizations, and
approximations, particularly in the formulation described here.

The planar, cylindrical, and spherical analyses were originally developed in
different laboratories and the treatments particularized for each surface.
However, due to the complexity of the spherical analysis, it is highly desira-
ble to have a panoramic view of near field scanning and a common notation for
the various scanning surfaces and physical systems. Then both general and
detailed comparisons can be made, facilitating (a) the transfer of understand-
ing from one surface or physical system to another, (b) the translation of
computer programs from one physical system to another (say EM to linearized
acoustic in a gas, liquid, or solid), (c) making sure that all available
computational efficiencies are utilized, (d) emphasis upon fundamentals rather
than a morass of detail, (e) generalization and extension to other scanning
surfaces and physical systems, and (f) defining the limits upon the tech-
niques. (Ad hoc studies of particular systems have lead to various erroneous
statements in the literature concerning limitations of near-field techniques.)
To achieve these ends, a generalized theory of near-field scanning is present-
ed, with spherical, planar, and cylindrical scanning and electromagnetic,
acoustic, and heat flow systems treated as mere special cases; in particular,
this theory includes the author's scheme for spherical data reduction [2], the
only existing practical technique with probe correction, adopted by both the
NBS and the Technical University of Denmark. Further, it provides background
for the author's extrapolation technique.

The antenna or other transducer is treated as a black box as far as the

formal analysis is concerned, with no consideration of its shape or current
distribution; however, known or assumed symmetry of the transducer may be used
in reducing the measurement and computational effort, and qualitative informa-
tion concerning the pattern or design is useful in choosing measurement condi-
tions and the modes used to represent the data.
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The theory is based upon generalized scattering-matrix theory and symmetry
analysis of the medium and differential equation(s), e.g., relativistic and
gauge invariance. It thus assumes mathematical linearity and invariance of
the medium with respect to certain translations, rotations, and/or reflections.
Actually, the theory is easily extended to non-linear transmitting transducers
operating at fixed input levels. The scattering matrix theory includes all
the transmitting, receiving, and scattering properties of the transducers, and
multiple reflections are included to all orders in the extrapolation method.
However, to simplify the data reduction for scanning on a surface, multiple
reflections between the transducers are minimized experimentally and neglected
in the scanning computations. Nevertheless, multiple reflections between each
transducer and its source or load are treated to all orders. There are two
parallel treatments of scanning; one assumes an ideal probe and the other
corrects for the effect of the probe pattern upon the measured signal. Atten-
tion is here confined to the (more complicated) probe-correction case.

For a given position and orientation of the probe with respect to the test
transducer, the complex received signal is given by

w(Bo) = ‘3 ."f:l' Pﬂ' Gﬂ.ﬂ(_Ro) QL!’ (1)
where W is an experimental quantity defined by
W(R) = bo(R) (1= T I)/ag, (2)

20 and rbo are the complex traveling-wave voltages of the input to the trans-

mitting transducer and the output from the receiving transducer, respectively,
and rP and FL are the complex reflection coefficients of the receiving trans-
ducer, lookfng from the load to the transducer and from the transducer to the
load, respectively. The operator R_ expresses the separation of the two
transducers and their relative orientations (for each measurement) in terms of
translations, rotations, and/or reflections which take the test-transducer
coordinate system into coincidence with the coordinate system attached to the
probe. The P's and Q's are elements of the scattering matrices of probe and
test-transducer, respectively, corresponding to the modes indicated by the
subscripts; specifically they are elements of the transmitting and receiving
submatrices (or vice versa, if the probe receives rather than transmits).
Since the modes constitute |linearly-independent mathematically-complete sets
of exact global solutions of the appropriate differential equation(s), they
and their coefficients completely describe the needed transmitting and receiv~
ing properties of the two transducers. The modes are completely specified by
the subscripts, including such factors as direction of propagation, kind of
Bessel function, TE,TM character, polarization (ellipticity), and angular
frequency w. A prime is used to indicate the coordinate system of the probe
and the absence of such a mark indicates the coordinate system of the test
transducer. The summation sign is used to indicate summation and/or integra-
tion, e.g., integration with respect to kx and ky.

For the familiar planar, circular cylindrical, and spherical modes, we express
N (for the test-transducer coordinate system) by

Tw,8,s),k_,k ,k_3-3-, (w,4,s),k ,kR;m,h;-, and (w),4,k_;n,m,s,h;-, respec-
tively, wherd tfe k's are the indicated components of the propagation vector,
m occurs in exp(imd), n occurs in P"(cos 8) exp(img), h is +1 and -1 for the
first and second kinds of Hankel functions, respectively, 4 indicates spin (0
for a scalar field and unity for an electromagnetic field (photon)), and s is
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| for a TM mode and 2 for a TE mode, transverse being defined with respect to
z = constant planes for Cartesian planar and cylindrical scanning and r = con-
stant spheres for spherical scanning. The TE,TM index s is of course deleted
for the scalar case. Note that the P's and Q's in (1) are for the coordinate
systems of ‘the probe and test transducer, respectively. The G's express the
transformation of the modal coefficients due to change of the coordinate sys-
tem (R_'s) during scanning and are based upon modal addition theorems, like
Graf'sCaddition theorem for Bessel functions. Equations (1) and (2) are inde-
pendent of the physical system, whether the probe transmits or receives, and
the nature of the medium, provided only mathematical linearity and negligible
multiple reflections between the transducers. Neither of the transducers need
be a probe; these equations express the complex received signal for cosite
interference or the extrapolation method as a fune&tion of transducer separa-
tion and relative orientations. Reciprocity of the transducers is not rele-
vant; they may be dissimilar arrays with ferrite phase shifters and isolators.
Similarly, the medium may be anisotropic, non-reciprocal, inhomogeneous, etc.
and of course lossy, provided only the G's and modes are known.

To obtain practical explicit expressions for the G's and the modes, some as-
sumptions must be made concerning the medium and form(s) of the differential
equation(s). If they are invariant with respect to a set of R 's which form a
group (i.e., a set which includes the identity element, all thé inverses, and
all the ordered products of the elements), we write N = n;m;p, where the par-
titioning is into major, minor, and subsidiary indices, respectively. The
n's and m's are symmetry indices, like even and odd, and the p's distinguish
between linearly independent modes of the same symmetry. (In the terminology
of group representations, the major indices designate an irreducible represen-
tation and the minor indices designate a row of that representation.) As in-
dicated by the dashes in the explicit forms of the last paragraph, there are
no subsidiary indices for the familiar modes in rectangular, circular cylin-
drical, or spherical coordinates, i.e., the modes (including the definitions
of the functions involved) are determined by symmetry alone. For analytic
simplicity, we choose the modes for different m's (but the same h and p) to
be partner functions, like ?in m$ and cos mg. Then for the group of go‘s,

_ n) p-1
where 8 , =1 if n'=n but is otherwise zero. For fixed R  and h, the D's are

matrices whose elements are (possibly complex) numbers; all probe-compensated
data reductions for planar, circular cylindrical, and spherical scanning are
based, at least implicitly, upon them, The D's are determined by symmetry
alone, express the transformations of functions of given symmetries under
symmetry operations, and are available for many groups. The familiar expres-
sions for the transformations of even and odd functions of x under reflection
in the x=0 plane are elementary examples. The fact that there is no m index
for rectangular coordinates is responsible for the diagonal character of the
G matrix for planar scanning, resulting in much of the simplicity of the anal-
ysis; in a lossless medium, the D matrices may be chosen unitary, so for
planar scanning, the G matrix is not only diagonal, but the diagonal elements
are roots of unity and so merely indicate phase shift.

Thus, we have explicit expressions for the interaction between a pair of

transducers as a function of separation and relative orientations. Further,
for each measured W value, there is a complex equation, resulting in a set of
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simultaneous equations for the desired unknowns (Q's). (The P's are deter-
mined in advance from measurements in the far field of the probe.) The finite
set of significant Q's expressing the pattern of the test transducer may be
determined from measurements (W's) made at essentially arbitrary positions and
orientations of the probe in the near and/or far field, provided only that the
W's determine the Q's in either the ordinary or least squares sense. However,
mechanical simplicity and efficient data reduction may be achieved by particu-
lar choices of the measurement lattice (R 's) and modes. Thus, it is conveni-
ent to confine measurements to a particuTgr lattice on a coordinate surface.
We divide R_ into two parts, namely operations $_ parallel to the measurement
=0 .
surface, préceded by the operation N_ normal to the measurement surface,
yielding the expression °

B (n) (-1
WR) = L B 80, 8pep Pye Opn(SS) O (4)
where -

- - (n) (v
Fue = e = 8 Cnne Oprpe P (o) Py (5)
Transformation (5) is simpler than that for a general R-I and, for a given
probe, frequency, and scanning surface, may be carried Qut once and for all,
yielding probe pattern coefficients in an intermediate coordinate system
indicated by the degree sign; this is quite important for the radial transfor-
mation of spherical EM modes. Operations and transformations parallel to the
measurement surface are indicated by Roman rather than script typefaces; the

D's are simpler than the D's, far simpler in the spherical case,

If the measurement lattice is chosen such that the S 's form a {(discrete)
group, application of orthonormalities of the transformation coefficients
(D's) with respect to summation on the measurement lattice to (4) yields

= o (n) (c-Vyy
Pe @ = 9 g W(R ) Dﬂ-a-ﬂ(§0 *, (6)

e

where * indicategocomplex conjugate, q is the ratio of the number of S 's to

—o
the number of rows in the D(D— matrices, and the representation (D(D)'s) is
chosen to be unitary, which is possible even for a lossy medium. |f there are
more measurements than interim unknowns, least squares values are obtained.
The D's for the translation and two-dimensional rotation groups have the forms
exp(+ik_x ) and exp(+img ), the familiar Fourier transform, series, and DFFT
being symﬁetry decomposi?ions; hence, (6) represents a Fourier decomposition
for planar and c¢ylindrical scanning, modified for the spherical case. Numeri-
cal implementation of (6) of course requires truncation of the infinite set of
modes (for the spherical case, neglect only of insignificant supergain modes),
but no other approximation is involved, even in the use of the Discrete Fast
Fourier "Transform.'' The DFFT, supplemented by matrix multiplication in the
spherical case, also supplants computation of functions of angles, even in
evaluating the far field. Explicit expressions will be given for the partner-
function modes, D's, and D's for planar, circular cylindrical, and spherical
scanning of scalar and electromagnetic fields.
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