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Abstract

Modified Edge Representation (MER) empirically

proposed by one of the authors has remarkable

accuracy for the surface to line integral reduction of

radiation integrals in scattering problems for near

source[1]. This paper investigates the mathematical

principle of MER. Some numerical results are given to

show the accuracy of MER in the scattering from the

rectangular.

Ⅰ. INTRODUCTION

  Physical optics(PO) is one of the high frequency

techniques, which has been widely applied to the

pattern analysis of reflector antennas. Since this

technique involves the surface integral, it has been

pursued the reduction of the integral to the line one for

saving the numerical computation. As for this

reduction problem there are two kinds of theories,

namely the exact reduction theory using Stokes’s

theorem [2][3] and the asymptotic reduction theory.

But the former has major drawback that it can’t be

applied to scatterers with curved surface because the

image theory is used to derive the reduction. On the

contrary, the asymptotic reduction theory would have

the potential capable of being applied to curved

scatterers and to GO approximate incidence. But it

needs at least five wave lengths for the distance from

the scatterer to keep the good accuracy. In this paper

we will show that MER has directly derived by using

Stokes’s theorem without the use of the image theory,

and that MER for the far field is the excellent

reduction theory.

II. MODIFIED EDGE REPRESENTATION

   A new concept named modified edge
representation (MER) was empirically introduced by
one of the authors[1] for the surface-to-edge integral
reduction of PO currents. Firstly, the edge of the
scatterer is replaced with modified one (unit vector τ̂ )
satisfying the diffraction law at each point as shown in
Fig.1. This requirement is depicted in Fig.1 and is
simply expressed as
   0ˆr̂r̂( io =τ⋅+ )   for general points         (1)

       t̂ˆ =τ      for diffraction points   (2)

Fig.1  Direction of τ̂  at several edge points in MER.

 The direction of vector τ̂  is independent of that of

the original edge t̂  and is generally different from it
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1D

2D

Dipole

τ̂
τ̂

τ̂

ir̂
or̂

高田 潤一




2

only two diffraction points D1 and D2.

  In MER, the diffracted fields have been empirically

calculated as follows:

(a) A local spherical coordinate system with the z -

axis along the modified edge τ̂  is considered at

every edge point Q.

(b) The field components of the incident wave on the

scatterer are expressed in modified edge coordinate

system.

(c) The magnitudes of equivalent edge currents at Q

are calculated for the modified edge τ̂  using

classical Keller non-uniform expressions, since the

new edge satisfies the diffraction law. In this

calculation only the radiation terms are included in

the incident field components.

(d) The line integration of these currents along the

periphery provides the diffracted fields; the

direction of equivalent edge currents should be

taken along the actual edge t̂  and is not along the

modified one τ̂ .

We will investigate the mathematical principle of

MER thus proposed in the following.

 Ⅲ. MATHEMATICAL DERIVATION OF MER

 (ⅰ) CURVILINEAR COORDINATE SYSTEM

     ON A CURVED SURFACE

Let S be a curved surface given by the vector form

           S: ),( τσ= rr ,              (3)

and let the boundary of S be Γ . We define

coordinates of the source, the observer and the any

point on S by ),,( iiii zyxP , ),,( oooo zyxP  and

),,( zyxQ , respectively. Denoting two distances ir

and or  as

       QPr ii =   and QPr oo = ,          (4)

we can define the curvilinear coordinate system

),( τσ  which is based on two kinds of trajectories on S

as follows:

  τ -curves:  contour lines such as oi rr + =const.

σ -curves:  the family of orthogonal trajectories to

           the family of τ -curves.

We hereafter take both parameters,σ  and τ , to be

equal to arc length alongσ , τ  -curves. Let us define

two unit vectors σ̂  and τ̂  tangent to τ -curve and

σ -curve, respectively, and define the unit vector n̂

normal to S. We can normalize τ̂  and σ̂  to be

identical with 
τ∂
∂r

 and 
σ∂
∂r

, respectively. We also

have the orthonormal frame { }τσ ˆ,ˆ,ˆ n  on S.  Since

      0ˆr̂ˆr̂
)rr(

oi
oi =τ⋅−τ⋅−=

τ∂
+∂

         (5)

with unit vectors ir̂  and or̂  oriented toward the

source and the observer from any point on S,

respectively, we obtain equations

            0ˆ)ˆˆ( =τ⋅+ oi rr ,               (6)

                  0ˆˆ =τ⋅n .               (7)

And we also have the relation

n

rr
nrrrr oi

oioi ∂
+∂

+σσ⋅+−=+∇
)(

ˆˆˆ)ˆˆ()(
~

,    (8)

where 
τ∂
∂τ+

∂
∂+

σ∂
∂σ≡∇ ˆˆˆ

~

n
n .

(ⅱ) LINE INTEGRAL REPRESENTATION

 The scattered filed E for far field due to surface

electric current J  and magnetic one M  on S is

given by the radiation surface integral
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where the time factor tje ω is assumed and η  stands

for the intrinsic impedance of free space. We may

surface currents J and M  as ijkr
oek −= JJ and

ijkr
oek −= MM , oJ and oM being independent of k.
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Next we use the identities for )ˆ(ˆ ooo rr J××  and

oor M×ˆ as

  
τ×ς′+τ××ς′=×

τ×ς+×τ××ς=××
ˆˆ)ˆˆ(ˆˆ

ˆˆˆˆ(ˆ)ˆˆ

21

21

ooooo

oooooo

rrrr

rrrrr

M

)J(
  (10)

where

{ }
21

)ˆˆ(1

ˆ)ˆ(ˆ

τ⋅−
τ⋅××

−=ς
o

ooo

r

rr J  , 
22

)ˆˆ(1

ˆ)ˆ(

τ⋅−

τ⋅×
=ς

o

oo

r

r J ,     (11)
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)ˆˆ(1
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r
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22
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−=ς′
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r

rr M  (12)

If the dimension of the scatterer is small enough

compared with the wave length, we may write (9) as
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Using the relation

      
τσ ˆˆ)ˆˆ(
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we obtain the significant equation
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Moreover, we note that the relation for any scalar

function f

              nfnf ˆˆ
~ ×∇=×∇              (20)

holds generally, where 
z

z
y

y
x

x
∂
∂+

∂
∂+

∂
∂=∇ ˆˆˆ  . Then (14)

can resolved into the sum of two integrals as follows:
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Assuming the case of 0ˆ)ˆˆ( ≠σ⋅+ oi rr , which

corresponds to the case where stationary phase points

doesn’t exist on S, we can apply Stokes’s theorem of

the vector form

      　  ∫ ∫
Γ

−=×∇
S

dfdSnf rˆ          (22)

to the second integral in (21). Then we obtain
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where t̂  is the unit tangent vector of the boundary Γ .

Next we evaluate the first term of (23) asymptotically.

When both the source and the observer are far from

the scatterer as the special case, the value of the

gradient part in the first integral in (23) is almost equal

to zero. In more general case where the source is close

to the scatterer, we will adopt a asymptotic technique

as following:

   

( ) dl
l

ne
rrjrrk

dSne
rrjr

o

o

rjk

oioi

rjk

oiSo

∂
τ∂×









σ⋅+
ς∇

σ⋅+
≈

×








σ⋅+
ς

∇
π

−

−

Γ

−

∫

∫

ˆ
ˆ)ˆˆ(ˆˆˆ

11

ˆ
ˆ)ˆˆ(4

1

1

1

  (24)

For the lowest order 0k , the first term can be ignored

and (23) finally becomes

        ∫
Γ

−

π
≅ dle

r
orjk

e
o

IA
4

1
,         (25)

where eI  is the electric equivalent edge current,

   
{ }

te
rrrjk

rr
ijkr

oio

ooo
e ˆ

ˆ)ˆˆ)()ˆˆ(1(

ˆ)ˆ(ˆ
2

−

σ⋅+τ⋅−
τ⋅××

=
J

I .  (26)



4

In the similar way we obtain other expressions:
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The integrands except orjke− in (27) are identical

with electric or magnetic equivalent edge currents in

MER. Since the coefficients of t̂  in (26) and (27) are

scalar, those are invariant for any coordinate system

which we adopt. If there are no stationary points on S,

the expression (13) with (25), (26) and (27) gives the

diffracted fields from the scatterer S. If not so, the

contributions from the stationary phase point should

be added to (13). It should be also noted that the

equivalent edge currents are directly derived by using

Stokes’s theorem. MER therefore could be applied to

scatterers with curved surface to which exact

reduction theories[2][3] can’t be applicable.

  

Ⅳ. NUMERICAL RESULTS

  Fig.2 is the geometry of the scattreing system used

for evaluating the accuracy of MER (25)-(27), in which

the scatterer S is the square plate of dimensions λ4  by

λ4  (λ being the wavelength) and the electric dipole

source with the moment (1,1,1) is located on (λ ,λ ,2λ ).

As surface currents on S due to incident fields iE and
iH , we assume the following generalized PO currents

       in HJ ×α+= ˆ)1(  and ni ˆ)1( ×α−= EM .       (28)

Fig.3 shows the scattering pattern in 。0=φo -plane in

the usual θφr -spherical coordinate system when

0,1−=α . The fine agreements for diffracted fields are

obtained between the two methods of calculation.

Ⅴ. CONCLUSION

 This paper mathematically derive MER for the

first time. MER gives the fine agreement with the

generalized PO surface integral for arbitrary position

of a source under the far field condition. It is also

found that MER could be applied to scatterers with

curved surfaces.
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         Fig.2  Geometry of the scattering system

     Fig.3  Scattered fields in θE and φE  from the

           square plate
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