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1 Introduction

Impedance boundary condition (IBC), which has been widely utilized in electromagnetics, is

a useful approximation tool for modeling more complex or practical objects in di�raction and

scattering analyses. However, as IBC was derived for a material layer on an in�nite conducting

ground plane [1],[2], it is important to check the validity of IBC for the �nite coated objects

with some terminations like edges. In Refs.[3] and [4], a scattering problem for a material

�lled rectangular trough, which is a kind of such �nite objects, has been analyzed by using

IBCs. Unluckily, their integral equation approaches have not been able to simulate the edge

termination e�ect, so that supplementary padding regions have had to be made an addition

in the vicinity of the edges for the accuracy improvement.

In this paper, so as to con�rm the genuine applicability of IBC for such con�guration, an

electromagnetic wave scattering by a loaded rectangular trough on a ground plane is approx-

imately analyzed by using standard impedance boundary condition (SIBC). In accordance

with the procedure of the Kobayashi and Nomura's method, the troublesome edge singularity

behavior can be analytically included in the formulation [5]-[7]. Therefore, one may easily

evaluate the SIBC's applicability to this trough geometry. The validity of the derived approx-

imate solution is discussed by comparing with the rigorous one via various points of view; such

as the dependency on the incident angle, the trough's depth and the �lled material parameters.

Here the time harmonic factor e�i!t is assumed and suppressed throughout the context.

2 Formulation

As illustrated in Figure 1 (a), let us consider the electromagnetic scattering problem for the

case that H polarized plane wave:

�
i (= H

i
z) = e

�ik0(x cos �0+y sin �0) (1)

impinges on the aperture of the rectangular trough, which is �lled by a complex material with

relative permittivity �r and relative permeability �r. Here k0 is free space wavenumber. In

y > 0, the total �eld �t(= H
t
z) may be considered as �t = �

i+�
r+�H , where �

i is the incident

�eld, �r is the corresponding specular reection �eld on the ground, and �H is the scattering
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Figure 1: Geometry of the problem

contribution due to the existence of the trough. According to the procedure of Kobayashi and

Nomura's method [5]-[7], �H may be represented as

�H=

r
�u

2

1X
m=0

Z
1

0

s
�

�2 � �20

fAmJ2m(�)J�1=2(�u)+BmJ2m+1(�)J1=2(�u)ge�
p
�2��2

0
v
d�; (2)

where Am and Bm are the unknown expansion coe�cients, and normalization with respect

to the half aperture width a (x = au; y = av; k0a = �0) is executed. Each component in

the above integral expression can be identi�ed as a class of Weber-Schafheitlin type integrals.

Taking into account the discontinuity characteristics of such integrals, the required boundary

condition on the ground (jxj > a; y = 0) can be automatically satis�ed [7].

In order to check the validity of SIBC, we shall now replace the material loaded trough

by an impedance sheet, as illustrated in Fig.1 (b). For determining the unknown coe�cients

Am and Bm in Eq.(2), the continuity condition of tangential �elds at the trough's aperture

(jxj < a; y = 0) have now simpli�ed to an impedance approximate one [1],[2]:

E
t
x(=�i!�0 � @�

t
=@y)jy=0=�rZ0 �H t

z(= �
t)jy=0 (3)

with

�r = �i
N

�r
tan(Nk0b); (4)

where Z0(=
p
�0=�0) and N(=

p
�r�r) are the intrinsic impedance in free space and the

complex refractive index, respectively. The simultaneous deterministic equations for the coef-

�cients can be easily obtained as

1X
m=0

AmfGNC(2m; 2q+ 1) + GZ(2m; 2q+ 1)g = �2
J2q+1(�0 cos �0)

�0 cos �0
; (5)

1X
m=0

BmfGNC(2m+ 1; 2q + 2)+GZ(2m+ 1; 2q + 2)g = i2
J2q+2(�0 cos �0)

�0 cos �0
; (6)

where GNC(�; �) is given as

GNC(�; �) = i
1

�r�0

�
Z
1

0

J�(�)J�(�)

�
d� = i

1

�r�0

�
2 sinf�

2
(�� �)g

�(�2 � �2)
(7)

and GZ(�; �), de�ned as

GZ(�; �) =

Z
1

0

J�(�)J�(�)

�

q
�2 � �

2
0

d�; (8)



90 120 150 180
0.0

0.1

0.2

0.3

0.4

b/
λ0

θ [deg.]

1 skin depth
       2
       1

[dB]

0.0

0.1

0.2

0.3

0.4

θ [deg.]

(a) (b)

b/
λ0

90 120 150 180

1 skin depth

       2
       1

[dB]

Figure 2: Error distribution of SIBC approximation for the angle-depth variation (monostatic

RCS calculation). 2a = 1:0�0, �r = 4�r. (a)N = 8:0 + i0:6 (b)N = 3:0 + i0:85

can be calculated from a numerically feasible series via the similar procedure in Refs.[5]-[7]. In

comparison with the corresponding rigorous formulation in Ref.[7], one can readily solve the

above simultaneous equations (5) and (6), since no series expression with slow convergence is

included in such equations.

By applying the saddle point method to Eq.(2), the far zone scattering �eld expression,

which is relevant for calculating the corresponding radar cross section (RCS) value, can be

easily obtained as

�H =

r
�

2k0�
e
i(k0�+�=4)

1X
m=0

fAmJ2m(k0a cos �)� iBmJ2m+1(k0a cos �)g; (9)

where (�, �) is the cylindrical coordinate, as shown in Fig.1 (a).

3 Numerical results and discussions

In general, it is considered that for nearly normal incidence SIBC precisely simulates the

electromagnetic wave behavior on an electrically high contrast and/or lossy material layer

with a small thickness, by replacing the material's contribution with a surface impedance

sheet [1],[2]. It must be therefore checked the SIBC's validity on both oblique incidence and

depth dependency. So we shall show �rst the monostatic RCS error distribution of SIBC

approximation for the angle-depth variation in Figure 2. In Fig.2, a comparison is done

with the results obtained by the rigorous formulation [7] for checking the accuracy of this

approximation. The corresponding skin depth �, which is de�ned as [8]

� =
1

=m fNg
�
�0

2�
; (10)

is also included in the �gure. It seems that the skin depth � of the material surface may serve

for judging the applicability of the approximation, and this observation leads us a condition:

b � � (11)

would be imposed. There are some notable errors over 1 dB at the oblique incidences for both

the refractive indices. Under the criteria given in Eq.(11), such error can not be observed for
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Figure 3: Error distribution of SIBC approximation for the variation of complex refractive

index N (monostatic RCS calculation). �0 = 160o, 2a = 1:0�0, b = 0:3�0, �r = 4�r.

N = 8:0 + i0:5 as in Fig.2 (a). While, for rather sparse material (N = 3:0 + i0:85) in Fig.2

(b), the noticeable error can be still detected even if Eq.(11) is satis�ed. This is due to the

fact that the wave in such electrically sparse material like <e fNg = 3 does not essentially

propagate only perpendicular to the boundary surface, and the reections at the subsurfaces

in the trough may be still appreciable and contribute to the RCS values. Though the detail

data is now omitted, we have already checked the accuracy for the dependency on <efNg [9]
and it has been examined under the satisfaction of the above condition (11) that the error

between the present SIBC and exact solutions is decreased to less than 1 dB when <e fNg > 6

with =m fNg = 1:0.

Finally, let us show the error distribution of the present approximation to the complex

refractive index N in Figure 3. It is observed from Fig. 3 that a good accurate range less than

1 dB widely exists for the variation of both real and imaginary parts of N .
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