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Abstract 

 
The depolarization-induced interference between two 
orthogonally polarized channels belonging to two different 
satellites is analyzed assuming the two channels with different 
power spectral density share some of the bandwidth. The 
equivalent white Gaussian noise generated in the shared 
spectral region is presumed to spread uniformly over the 
whole channel bandwidth with an appropriately adjusted 
noise power spectral density. In this manner we generalized 
XPD formula and obtained effective signal attenuation due to 
cross-channel interference between two satellites operating at 
not far-off center frequencies with orthogonal polarization. 
 

1. INTRODUCTION  
 
In this paper, we present an analysis of the interference 
between two channels belonging to two separate 
communication satellites. The channel interference between 
two satellites may become an important issue soon, as the 
space becomes more crowded with increasing number of 
satellites and, at the same time, the demand for high speed 
data transmission that requires a wider channel bandwidth 
increases ever more. 
Fig. 1 shows a two-satellite interference configuration, in 
which a satellite channel is interfered by another channel 
belonging to a different satellite. The most fundamental 
approaches to minimize the channel interference may be: 1) 
to reduce the spectral bandwidth shared by the two channels; 
2) to reduce the antenna beam overlap between two satellites; 
3) to allocate mutually orthogonal polarizations to the 
satellites involved. In this study, we would consider only the 
case in which mutually orthogonal polarizations are employed. 
The configuration employing the same polarization may not 
be very interesting in practical sense, since in this case the 
interference between two channels would be always much 
more severe, requiring either very high gain antennas or much 
more rigorous bandwidth management, compared to the case 
employing orthogonal polarizations. 

                                                           
Some of the results reported in this paper are based on the works of 

KOMPSAT3 and BK21 program, which are being supported by MOST 
(Ministry of Science and Technology) and MOE & HRD (Ministry of 
Education and Human Resources Development) of Korea, respectively. 

It is believed that not much work has been done regarding the 
depolarization-induced interference between two-satellite 
channels. Some relevant works may be the ones reported in 
[1], [2] and [3]. Arun Kumar Sigh et al. [3] presented some 
experimental results showing, without detailed analysis, that 
the depolarization effect could be reduced by offsetting the 
center frequencies of two channels. One of the most important 
works regarding the depolarization-induced interference may 
be the analysis of the dual-polarized frequency reuse systems 
by Hugues Vasseur [4]. In the dual-polarized systems, 
however, the two orthogonally polarized channels share the 
whole bandwidth, rather than a fraction of the bandwidth, and 
have an equal power level, and thus, the results may not be 
directly applicable to the two-satellite channel interference 
problem. Recently Lee et al. [5], [6] have analyzed the 
depolarization effect in dual-polarized system employing 
frequency offset between two channels. In their case, the two 
channels were assumed to share only a fraction of the 
bandwidth and have an equal power level. In this paper, the 
approach by Lee et al. would be extended to analyze the more 
generalized depolarization-induced interference cases, in 
which two interfering channels have arbitrary power levels as 
well as arbitrary center frequencies. 
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2. DEPOLARIZATION BETWEEN ADJACENT SATELLITES 

A. Previous XPD Models 
It is well known that even the orthogonally polarized channels 
suffer the channel interference due to the depolarization effect 

 
 

Fig. 1: Channel interference between two satellites 
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caused by hydrometeors such as rain drops or ice particles in 
the RF signal transmission path. The degree of the 
depolarization is often specified by cross-polarization 
discrimination (XPD), which is defined by the ratio of the 
received co-polar signal to the received cross-polar signal and 
corresponds to the ratio of carrier-to-cross-polarization 
interference, i.e., C/I. There have been many works to 
estimate XPD theoretically or empirically [7], [8], [9], [10]. 
Probably the most well-known formula for XPD may be the 
one recommended by ITU [8], which, in the time period of no 
more than p % of the time, is expressed by   

 
Fig. 2: Spectrum distribution of two orthogonally polarized interfering 

channels 
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where f, CPA, , EL,  and p are operating frequency, co-
polar attenuation [11], polarization factor, elevation angle, 
effective standard deviation of the raindrop canting angle, % 
of time at the frequency (f), respectively, and V(f) is 
frequency dependent values of 12.8ƒ0.19 (8  ƒ  20 GHz) and 
22.6 (20 < ƒ  35 GHz). It is noted that the XPD formula 
given in (1) is for two orthogonally polarized single 
frequency sinusoidal signals of an equal power. 
The co-polar signal components resulting from the 
depolarization of the cross-polar signals were often 
considered as a white Gaussian noise (AWGN), which causes 
an extra signal attenuation in addition to the co-polar 
attenuation (CPA)  [4], [12]. The depolarization-induced 
attenuation AXP in dual-polarized systems can be related to the 
reduction in Eb/No (expressed in decibels), i.e. the energy per 
bit to single-sided noise power spectral density as 
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where (Eb/No)nom denotes the Eb/No obtained under nominal 
condition, in which no particular intermittent propagation 
impairments exist, and  (expressed in bits/sec/Hz) is the 
spectral efficiency of channel involved. 

B. Generalization of XPD 
 
Fig. 2 depicts the reference channel of channel R of 
bandwidth B, center frequency ƒr, power spectral density C, 
which is interfered by an adjacent satellite channel with 
orthogonal polarization and power spectral density Cadj. In the 
figure, BI denotes the width of spectral band shared by two 
channels. It is noted that the channel R consists of two types 
of spectral regions, one of width (B – BI) suffering only the 

co-polar attenuation and the other of width BI suffering not 
only the CPA but also the degradation due to depolarization. 
In the dual-polarized system in which the whole bandwidth of 
the co-polar channel is shared by the cross-polar channel, the 
depolarization-induced interference would occur over the 
whole bandwidth. The equivalent noise due to 
depolarization-induced interference may be considered as an 
additive white Gaussian noise (AWGN) with a single sided 
power spectral density of Io [4], [12]. In our case, however, 
the depolarization-induced interference would occur only 
over the shared spectral region of width BI. For the sake of 
convenience, however, we presume that the equivalent 
channel interference noise spreads uniformly over the whole 
bandwidth of B. It is noted, however, that the uniform 
spreading of the interference noise over the whole bandwidth 
should be compensated by scaling down appropriately the 
intensity of equivalent interference noise. In this study, the 
equivalent depolarization-induced interference noise is scaled 
down from Io to (BI /B)(Cadj/C)Io, assuming that firstly the 
interference noise generated in the shared spectral region is 
proportional to the power spectral density of the interfering 
cross-polar signal Cadj and secondly the generated noise 
spreads uniformly over the whole bandwidth. This AWGN-
like depolarization-induced noise would then be simply added 
to the inherent system noise No. Thus, the overall ratio of the 
energy per bit to single-sided noise power spectral density 
would be reduced to Eb/[No+(BI /B)(Cadj/C)Io]. The reduction 
in the ratio of the energy-per-bit to the depolarization-induced 
interference power spectral density may be expressed in dB 
scale by 
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where D (expressed in bits/second) is the binary transmission 
rate, C/I, the carrier-to-interference power ratio is replaced by 
XPD, and (C/Cadj) denotes power ratio, i.e., the ratio of the 
reference channel power to the interfering channel power. We 
note, in (4), that  is a constant while the third term 
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10log10(B/BI) and the fourth term 10log10(C/Cadj) depends 
sensitively on the degree of the spectral overlap of the 
channel and the power level of the interfering channel, 
respectively. Thus, the terms, 10log10(B/BI) and 
10log10(C/Cadj) may be interpreted as the improvement factors 
of XPD over that in dual-polarized system, which are related 
to the width of the shared bandwidth and to the power level of 
the interfering channel, respectively.  
From the above reasoning, we may introduce a generalized 
form of XPD denoted by XPDFOI, which is defined by  
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here XPD corresponds to value of XPD in dual-polarized 

ation Due To Channel Interference 
 overall 

w
system in which the bandwidth is completely shared by the 
interfering channel, and therefore it should be evaluated, for 
instance, by (1). 

C. Signal Attenu
If we let (Eb/No) be the ratio of the energy-per-bit to
noise, including the depolarization-induced interference noise, 
for the received signal of channel R, it may be expressed by 
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here (Eb/No)S denotes the Eb/No ratio for the single-polarized w

system of width B in the R-channel that is affected by only 
co-polar attenuation (CPA) and may be expressed by 
[(Eb/No)nom – CPA]. Therefore, (6) may be then expressed, as 
similarly as in (2), by 
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here A  denotes the effective attenuation in received signal R w I

due to depolarization-induced channel interference, which is 
incurred additionally over CPA in the single channel systems. 
Thus, inserting (4) into (6), we obtain AI given by 
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3. SIMULATION AND RESULTS 
 

or the simulation, we assumed the two orthogonally 
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4. CONCLUSIONS 
 

e have analyzed the effect of depolarization-induced 

lts from this study may find some 
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Fig. 4: Effective attenuation AI as a function of the shared spectral width BI  
(power ratio, C/Cadj  =1) 

        Fig. 5: Effective attenuation AI as a function of power ratio 
        (BI = 40 MHz) 

 
Fig. 3: Generalized XPD as a function of the shared spectral width BI (power ratio, C/Cadj  =1) 
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