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1.Introduction
Recently ISI-SAGE (Initialization and Searching Improved-Space Alternating Generalized

Expectation Maximization) has been proposed to jointly estimate channel parameters in mobile
environments [1]. Since its introduction, the application of ISI-SAGE has been widely reported
by many researchers, especially in the channel sounding activity.

However, as will be shown in the subsequent section, the direction of arrival (DOA) esti-
mation of each wave in ISI-SAGE is founded on beamforming principles, hence coherent waves
generated from a slightly distributed source cannot be separated if the angular spread (AS)
of that source seen by an antenna array is smaller than the 3dB beamwidth of the antenna
array. In this case, the signal model of the ISI-SAGE depending on a single plane wave model
is not reasonable and should be reconsidered. As a consequence of model error, the accuracy of
estimating the nominal direction of such a source is degraded. More importantly, the residual
power from waves estimated and cancelled earlier, but not perfectly due to model errors, cause
multiple sidelobes, which could be detected as different waves in some future iterations of the
estimation.

In this paper, we propose an application of the extended array mode vector (AMV) based
on the first-order Taylor series expansion to the ISI-SAGE algorithm with the aim of improving
the accuracy of estimating a nominal DOA and alleviating the problem of detecting spurious
waves when ASs are less than the resolution of the array antenna. Moreover, since the first-
order approximation becomes invalid as the AS becomes wider, we also extend the AMV by the
second-order approximation and apply it to the ISI-SAGE.

The paper is organized as follows. In Section 2, the preliminary data model is formulated
and followed by a brief overview of the ISI-SAGE. Next, the first-order approximation of the
AMV is explained in Section 3. In Section 4, by using second-order approximation, the more
accurate ISI-SAGE is enlightened, and simulation results are carried out to verify the perfor-
mance of the ISI-SAGE based on our proposed extended AMV in Section 5.

2.Data Model and ISI-SAGE Algorithm
A. Data Model

From here onwards, we assume the received signal can be mathematically expressed as the
superposition of K waves from different K clusters. The kth cluster is possibly further decom-
posed as the sum of many plane waves from local scatterers around the center of the kth cluster.
Furthermore, for simplicity, all K waves are presumably undistinguishable by sampling in other
parameter dimensions, except in DOA in the azimuth direction. Thus, our problem can be con-
sidered to be equivalent to the problem of estimating DOAs of narrowband signals by a uniform
linear array (ULA). Note that the received signal is assumed to be collected in the observation
time less than the coherence time of the channel, so that the channel is approximately invariant.
With these assumptions, a measurement of the M -ULA output x (t), which is corrupted by
additive noise, can be written as

x (t) =
K∑

k=1

vksk (t) + n(t), (1)

where vk is the spatial signature (SS) of the kth signal, whose size is M × 1, and sk (t) denotes
the baseband signal from the kth cluster. Given the nominal DOA θ0,k and the angle deviation
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from the nominal DOA of the dth scattered multipath θ̃d,k, the kth SS from Dk scatterings takes
the form

vk =
Dk∑

d=1

βd,ka
(
θ0,k + θ̃d,k

)
, (2)

where the complex gain of each scattered wave is denoted by βd,k. a (θ) is the AMV of ULA in
direction θ. It has been known that the form in vk cannot be represented by any single DOA
in the form of the AMV a (θ).

B. ISI-SAGE Algorithm
The framework of ISI-SAGE hinges on expectation maximization (EM) consisting of the

expectation step and maximization step. In the expectation step, the complete data for the
kth wave is estimated by using estimated parameters from the maximization step maximizing
loglikelihood function of the measured data. According to our assumptions and the Successive
Interference Cancellation (SIC) method, in which the parameters of waves are estimated suc-
cessively, the maximization step for the DOA θk and the complex gain of the kth cluster γk is
carried out as

θ̂k = arg max
θ
|E [aH (θ) x̂k]|, (3)

γ̂k =
E [aH (θ) x̂k]

M
, (4)

with x̂k denoting the estimated signal for the kth wave by canceling previously estimated waves
depending on the estimated DOAs. As will be shown later, the model mismatch due to the use
of a (θ) causes the error in estimating nominal DOA and results in spurious waves.

3.The Extension of ISI-SAGE by the First-Order Approximation
The first-order Taylor series expansion has been applied to the signal model of MUSIC for

estimating a wave with AS caused by local scatterings near a mobile [2, 3]. Assuming that the
AS of each kth wave ∆θk is small, the first order approximation of the Taylor expansion around
θ0,k can be used, and each a

(
θ0,k + θ̃d,k

)
can be decomposed as a

(
θ0,k + θ̃d,k

) ∼= a (θ0,k) +

θ̃d,kd (θ0,k), where d (θ0,k) = ∂a(θ)
∂θ

∣∣∣θ=θ0,k
. Substituting this into Eq. (2), then

vk = γk {a (θ0,k) + ξkd (θ0,k)} , (5)

where, γk =
Dk∑
d=1

βd,k, ξk = ξrk + ξik =

Dk∑
d=1

βd,k θ̃d,k

γk
. In Rayleigh fading channel, we assume that

βd,k’s are independent and identically distributed (iid) with the mean E[βd,k] is zero. In addition,
if βd,k’s are assumed to be independent of directions, and Dk is large enough so that the central
limit theorem (CLT) is satisfied, γk is reasonably to be approximated as a complex Gaussian
random variable. Finally, vk can be further simplified as

vk
∼= γka ((θ0,k + ξrk) + ξik) . (6)

Here, we extend the maximization step in Eq. (3) to a more general AMV by using a ((θ + ξr) + ξi)
in the above form of v instead of a (θ). To reduce the number of parameters to be estimated,
θ+ξr can be jointly estimated as one parameter ζ, i.e. a ((θ + ξr) + ξi) = a (ζ + ξi). Altogether,
comparing with the standard ISI-SAGE, the number of parameters to be estimated increases by
only one parameter, that is ξik. As will be shown via simulations, while the first-order approxi-
mation improves the performance of ISI-SAGE to some extent, it is unsuccessful in representing
the signal model when AS becomes wider, but still by far narrower than the 3dB beamwidth.
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4. More Accurate ISI-SAGE Based on the Second-Order Approximation
In this section, the second-order analysis is carried out. For the case that the contribution of

the second-order Taylor expansion cannot be neglected, a
(
θ0,k + θ̃d,k

)
of the kth cluster should

be modeled as

a
(
θ0,k + θ̃d,k

) ∼= a (θ0,k) + θ̃d,kd (θ0,k) +
θ̃2
d,k

2
f (θ0,k) . (7)

Then,
vk = γk {a (θ0,k) + ξkd (θ0,k) + ηkf (θ0,k)} , (8)

where f (θ0,k) = ∂2a(θ)
∂θ2

∣∣∣θ=θ0,k
, and ηk = ηrk + ηik =

Dk∑
d=1

βd,k θ̃2
d,k

2γk
. We define

g (θ, ξ, η) = {a (θ) + ξd (θ) + ηf (θ)} . (9)

The cost-function of the maximization step for this case of the AMV can be expressed in terms
of g (θ, ξ, η). It can be seen that the number of parameters including real and imaginary parts
of ξk and ηk for the second-order approximation case is 5, which is a rather large number and
may increase computation time. However, considering the need for accurate characterization of
the channel, the second-order approximation approach is certainly worthy of consideration.

5.Simulations
A. Nominal DOA Estimation

To simulate the performance of AMVs mentioned above, we consider the case where one
wave with D1 = 30, which distribute uniformly over the interval [−∆θ1/2, ∆θ1/2] impinges on
ULA, whose M and the antenna spacing are 6 elements and 0.487 wavelength, respectively.
The nominal DOA is fixed at 0◦, and the average signal to noise ratio (SNR) is 20 dB. For this
condition, the 3dB bandwidth of the array antenna is 20.62 degrees. In Fig. 1, the mean error of
DOA estimates from 2000 simulations of each AMV are plotted in terms of ∆θ1 , which is varied
from 1 to 10 degrees. From the figure, considering the results from the ISI-SAGE using the
first-order approximation, the accuracy of the nominal DOA estimation is somewhat improved.
This is possibly due to the effect of the simplification in Eq. (6). In the case of the second-order
approximation, a great improvement can be easily observed. It means that the AMV in the
presence of AS can be well approximated by extending the AMV to the second-order of the
Taylor series.

B. Problem of Detecting Spurious Waves
Next, we assume that a second wave with ∆θ2 = 0◦ is present in the direction of −35◦ in

addition to the first wave as mentioned above, except that the SNR is 40 dB. For the sake of
simplicity, the power of the second wave is set to be 20 dB below that of the first wave, so that
the spurious waves could be detected by the algorithms before the second wave. To evaluate
the performance on reducing the occurrence of spurious waves, we observe the DOA estimates
of the second wave by using 20 simulations. If the estimated DOA is between −40◦ and −30◦,
it is considered to be of the second wave, and no spurious wave is detected. Figures 2, 3 and
4 show the DOA estimates of the second wave using the standard, the first and second-order
approximated AMVs in the ISI-SAGE, respectively. Two cases of ∆θ1 = 1◦ and ∆θ1 = 6◦ are
investigated in each figure. From the figures, the percentages of correction estimation based on
the criterion mentioned earlier are summarized in the Table 1. It can be seen that with the
first and the second-order approximations of AMV, the ISI-SAGE can efficiently suppress the
presence of spurious waves as compared with the standard ISI-SAGE. Moreover, the ISI-SAGE
using the second-order approximation can successfully work even when the AS is wide, in which
the first-order approximation cannot give satisfactory results.
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Figure 1: Mean error of estimated DOA from
the nominal DOA.
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Figure 2: Estimated DOA of the second wave
by using the standard ISI-SAGE.
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Figure 3: Estimated DOA of the second wave
by using the ISI-SAGE using the first-order
approximation.
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Figure 4: Estimated DOA of the second wave
by using the ISI-SAGE using the second-order
approximation.

6.Conclusions
In this paper, we proposed the extended AMVs based on the first and the second-order

approximations for the ISI-SAGE algorithm. According to numerical simulations, the results
clearly demonstrate that our proposed approach can be effectively used for DOA estimation in
real mobile scenarios in which a wave with AS arrives at an array antenna.

Table 1: Percentages of correction estimation

∆1 = 1◦ ∆1 = 6◦

Standard ISI-SAGE 55 % 5 %
ISI-SAGE using the first-order approximation 100 % 10 %

ISI-SAGE using the second-order approximation 100 % 90 %
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