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1 Introduction

The diffraction problem of electromagnetic wave from a sinusoidal grating is one of the basic
problem in light wave technique and radio wave engineering. Chuang and Kong{l] described
an extensive literature survey of this important boundary value problem. Recently, the Fourier
grating has been developed by using holographic exposure process, and analysis of that grating
with metallic loss has already heen carried out by using the boundary element method and
mode matching method{2]. We are interested in the diffraction problem from a metallic Fourier
grating whose profiles are represented by a superposiotion of sinusoidal waves. When diffraction
characteristic of the Fourier grating are analyzed in short wavelength region of light, lossy
metallic Fourier gratings with arbitrary complex permittivity must be considered[4].

In this paper, extended boundary condition method was applied to analyze the two media
boundary value problem of Fourier gratings given by Chuang and Kong[l]. This method is so
called T-matrix method in the formulation of the problem and also it is regarded as an adjoint
method to the mode matching method. We gbtained elements of T-matrix for Fourier grating
with basic sinusoidal wave and the second harmonic wave newly, while an analysis of Chuang
only basic sinusoidal wave is treated. Numerical results of the diffraction eflfeciency and the
energy flow near the Fourier grating are presented.

2 T-matrix formulation

Let us consider the electromagnetic wave diffraction by periodic varying suface(e.g. Fourier
grating) illuminated by a plane wave. We assume a two-dimensional problem where the surface
does not vary in the y direction and the plane of incidence is the z — z plane for incident angle
6; as shown in Fig.1. The surface is given by

2(z) = ~h {cos (2;“”) + 7 cos (4’%”)} (1)

where P is the period of grating, h is the amplitude of the grating, h+ and 6 denote the amplitude
and phase of the second harmonic wave, respectively.

In the region 1 and 2, the two-dimentional wave equation of electric and magnetic fields in
the rectanglar coordinate is derived form Maxwell’s equations as follows:

9%, 0w, ” Ey: TE wave :
. v y 1.2 - W= 2
32 T 92 thv, =0, v { H,,: TM wave (2)

where k, = w /&, jt, (the suffix v denotes » = 1 for region 1, v = 2 for region 2), w is the
angular frequency, ¢, and p,are the permittivity and the permeability in each region respectively.
Periadic time dependency exp (jwt) is supressed throughout.
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From Huygens’ principle and Green’s theorem. it follows that
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and do' is also the normal directionvector defined by do’ = dux’ (— :i(l/ )i + 2) which 7 and 2
T

are the unit vector in z and z direction, respectively.
We start with introducting a basis of Bloch function[1]

exp (ijz,,,r,,- 1'-)
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The function ¢, (—kf,“m . F) corresponds to the up-going reflected wave, whereas the ¢, (—k:,,, . f)

represent the down-coming wave. Futher ¢, (kfm . F) arises in expanding the Green functions.
A field expansion may be expanded to get

mem ( . ) , > maxz(r),
} Za,m( 7).
|
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S Anir (~F5, 7).
m
The surface electromagnetic field depends on r only, the unkonown field in terms Fourier
series expansions is used. Applying the boundary conditions for the tangential fields on the
periodic surface, we obtain the following matrix equation:

vy (7)
0

Ui (F) + z < min z(z),

0

Wa(F) ()

z < minz(z).
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In the above expression, c; = 1 for the TE case, ca = €;/¢3 for the TM case, B, must be zero
for the radiation condition in region 2. The incident plane wave is expressed

oxp (-7 )

_exp{—jhkizsing; + jk;zcos ;)

Vcos 6; ()
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where 6; being the angle of incidence with respect to the z axis. Therefore it is determined

_ {1 {(m=0),
@m = {0 (m # 0).

In the eq.(6). the element of T-matrix expressed in terms of Bessel functions are obtained as

(8)
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The result of a sinusoidal wave grating is obtained by setting 4 = 0 in this section.

3 Numerical calculations

In Fig.2, it is numerically simulated that the energy error for the trancted number N(=M)
is calculated in the case that Fourier grating is made of complete dielectric body. Thus result is
a similar in the case that is perfect conductor. We found that the truncted number N depends
on the groove deep of the Fourier grating h.

Numerical result of the diffraction effeciency by using this method agrees well with the mode
matching method[4] while metallic loss of a grating medium is presented as shown in Fig.3.
When the resonance absorption for TM polarization is caused by metallic loss, the energy flow
near the Fourier grating with allow of the Poynting vector is illustrated in the Fig.{ for §; = 6.8°,
% = 0.3 and other parameters which are indicated in Fig.3.

4 Conclusion

Extended boundary condition method was applied to analysis of two medium boundary value
problems of the Fourier grating. We obtained the element of T-matrix for the Fourier grating
that basic sinusoidal wave and the second harmonic wave are considered. Numerical results
showed that this method is useful for analysis of the Fourier grating with metallic loss.
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Fig.2 Energy errors ¢ as a function of N.
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Fig.4 Energy flow of the total field near
the surface (TM wave).



