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1. ABSTRACT

A new prescription is given to the electromnagnetic scattering by a homogeneous and
anisotropic dielectric object. The scatterer is located in free space. A volume integral equa-
tion is used to formulate the boundary value problem. Via the plane wave angnlar spectrum
‘expansion of electromagnetic field inside a homogeneous scatterer, entive domain basis functions
are chosen to be solutions to the wave equation inside the scatterer. A Galerkin method in
the Fourier transform spectral domain, which gives numerically stable solutious. is applied to
convert the volume integral equation to a linear system of equations. The Fredholm integral
equation is further regularized by taking into account the singularity of dyadic Green's function
in source region.

2. INTRODUCTION

Recently. there has been a growing interest in the electromagnetic scattering of three di-
mensional object. The conjugate gradient method and the fast Fourier transform{CGFFT)[1,2]
have widely used to the scattering by a dielectric body with arbitrary inhomogeneity and
anisotropy. The Fredholm integral equation method(FIM)[3-6] have successfully applied to the
scattering by a homogencous object. However, for a homogeneous scatterer, CGFFT does not.
explore the homogeneity of a scatterer and FIM does not utilize the convolution properties of
the volume integral equation. These two methods call for the present approach which fully uti-
lizes both the homogeneity of scatterer and the convolution characteristic of the volume integral
equation.

The approach addressed in this paper is strongly related to the method widely used in
the analysis of guidance[7], resonance[8]. radiation(9)], and scattering[10-12] of rectangular con-
ducting plates. Of greatest importance to this work is the paper series by Kaklamani and
Uzunogluf11.12). Also, recent work based on the plane wave angular spectrum expansions|3-
6.13-16] is important to this paper. In this paper, a new approach consisting of regularized
fredholm integral equation technique in conjunction with the Galerkin method in the Fourier
transform spectral domain is presented to treat the electromagnetic scattering by a homogeneous
anisotropic object. Instead of the algebra manipulation, the main emphasis is given to the idea.
Throughout this paper. time factor is exp(jwt).

3. FORMULATION

Cousider scattered fields generated by a homogeneous scatterer illuninated by a given inci-
dent wave E;, (7). The scatterer is located in free space with constant permittivity £, magnetic
permeability g .and wavenmunber ky = w,/Eopg . Assuine a homogeneous and auisotropic ob-
ject with constant tensor permittivity ge and permeability pol, wheve [ is the unit dyad. The
source induced in this homogeneous dielectric scatterer is polarization current J

J(r) = jwegle — I] o E(r) (1)
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The total electric field can be described by the following volume integral equation

B(r) = Bunclr) + (e~ Do [ Golr.r') o B(r'ar’ @)
where . (ikal 0
"o 1 exp[—jhkolr — »
Qu(r‘r ) - (_I_+ kgvv) 47r|1‘ —T’I (3)

is the dyadic Green's function in free space.

In order to proceed with the solution of (2). let the observation point » in (2) is restricted
inside the homogeneous anisotropic scatterer, an integral equation is obtained for the unknown
electric field E(r) inside the scatterer vohune V. Following the method used in the references[3-
6,13-16], we can express the electric field inside the homogeneous and anisotropic scatterer as

2 2w
E(r)= Zfo /0 depy. sin 0,,d6;.Cy (04, pr) Er {0k, $1) exp[—7Kn Ok, d1) - 7] (4)

n=1
E, (0, 1) = Eyr(Or. 91 )T + By (00, 017 + En (6, $1)Z {(5)
(6. d1) = kn(0k. &1) (65, d) (6)
E(8i, dr) = cos ¢y sin ;% + sin ¢y sindyj + cos 8.7 (7)

where C, (0. di).kn (8i, @) and E, (8, ¢1.) are the undetermined amplitude, wave number and
wavevector direction of the nth eigenwave in an unbounded homogeneous anisotropic mediumf{13-
16], respectively. Furthermore, 7.f, and Z are unit vectors in a rectangular coordinate system.
(4) can be discreted as[16)

2 s T
E(T) = Z z Z Cnlen(les d’ks) exp[_jkn(ekta ¢ks) ‘ T] {8)
n=1s$=01=0
2m2 )
Crst = G WeWikn (Bt $15)Can B Bis) i B 9)
tm
= — 10
O T (10)
52
T e 11
s 5 (11)

where T and S, and W, and W, are the node munbers, and weight coefficients of munerical
quadratures with respect to 8 and ¢, respectively. Moreover, the multi-index nst can be
denoted by a single index m and therefore (8) can be rewritten as

E(r)=3 CuEn(r) (12)

Taking into account. the Fourier expansion of scalar Green's function in a spherical coordinate
systent

ibaly — o 2 pm itk —
exp[—jholr — ] _ _1 /w / / K2dkdgy sin 0y, BT P =T g
@r¥ S Jo Jo

An|r ~ 7| 2 — kg
:multiplying both side of (2) by the following vector F,(r)(* denotes the complex conjugate)

Fm‘(r) = (i_l).Em'(r)
(m'=-n'.s~'!.',n'=1,2;3'=0,...,S;t.'= veees T) (14)

where the explicit expression of E,y(r) is given in (12); using the Parseval theorem in the
spectral domain approach|7-12], we finally obtain

[anlvl’];\lxz\l[jm];\lxl = [Vm"].'\lxl (15)
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where

Voo = [ Fru(r)s Bunelridr (16)
I =Ca (17)
B = /0 o fo " dghy sin By dB, o (G, 1)

w§£§° o (L—kE] o Fr (6. 9x)

+% [v Fi(r)e Fy(r)dr (18)
PO d) = [ Futr)explikok - rldr (19)

Note that the singularity of dyadic Green's function in the source region and its counterpart
in the Fourier transform spectral domain[17] has been taken into consideration. By the way, it
is possible to remove the singularity of dyadic Green’s function by introducing the polarization
charge source p via the continity equation of curent. However, previous numerical experiences
show that it is just the supersingularity of dyadic Green's function that leads to better numerical
stability of the final linear system of equations. It is also interesting that for a rectangular
dielectric pavallelepiped[11]. a finite circular cylinder and a sphere, the Fourier transform (19)
can be analytically calculated. In addition, for an arbitrary volume V,.all the volume integrals
can be reduced to swface integrals by virtue of the second Green's identity{18].

This section would not be complete without mentioning the counterpart of (4) and (5) for
isotropic homogeneous object. Because the well known complete set of vector wave functions
are derived via the pilot vector = [17], which loses many useful properties of (5),and meanwhile
the set of vector wave functions derived from pilot vector Z is not complete[18],ihe following
expressions ave suggested:

2w R
E(r) = / / deby sin 0,6,
g 0

[Ce(8i, 91)F + Cy{Br, b1}G + C: (., d1)Z) exp—3kn 6k, drc) - 7] (20)
C: (8., ¢1) cos ¢ sin by, + Cy(Oy, pr) sin @y sin 6. + C- (61, Pr) cos b =0 (21)
where (20) is based on that each rectangular component of electric field in a isotropic medium

satisfies the wave equation and (21) is due to the fact that the divergence of electric field must
equal to zero. So we identify

ky = ko = kov/E (22)
sinb
E\ (6, ) = 7 — S22k (23)
cos 8,
in p sin 6y,
Ealby. ¢y) = 7 — Sndusinbi (24)
cos 8.

Let T in (8) be a odd munber, no numerical trouble is involved even if 8, = w/2. Notice
that our choice of basis functions for isotropic media is better than that given in [11] since the
undetermined coefficient C.(8y. ¢1) of [11] not ouly increases the matrix size but also results in
the possibility of spurious solutions[18].

Finally, we point out that if a homogeneous scattever is of complex shape, we may use the
following multiple center expansion to represent the field iuside the homogeneous scatterer{18)

N2 o =
Eir)=3 %" /0 /0 dopy. sin 6, dB,CY 8k, 61 ) Bt (. b1) expl—jken (Br 1) - (7 — 1) (25)

=1 n=1
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4. CONCLUDING REMARKS

The proposed approach makes a full use of the homogeneity of a scatterer and the con-
volution characteristic of the vohume integral equation. Probably, this work can be viewed as
a minor extension of spectral domain approach for strips/slots{7] and plates/apertures[8-10] to
the three dimensional geometries. The essential difference between this paper and [11,12] is
that we utilize the Fourier expansion of scalar Green's function in a spherical coordinate system
while [11,12] use the Fourier expansion of scalar Green's function in a rectangular coordinate
system. It is evident that the latter is a travail extension of previous work(7-10], but the former
is not. The great advantage of our approach is that the fourier integrals are with respect to
finite regions. Therefore, instead of the fast Fowrier trausform, we will use the novel numerical
quadrature applied in [15] to evaluate all the closed surface integrals appearing in this article.
This procedure totally avoids the so called aliasing problem|[1,2] arising from the application of
fast Fourier transform. It is noticed that this paper is based on the same approximation of the
field inside a homogeneous and anisotropic medium as [3-6]. So our method should be applica-
ble to the geometries suitable for the method of [3-6]. The method proposed here can also be
applied to the elastic wave scattering{14]. The numerical iinplementation of present approach is
in consideration and will be reported later.
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