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1. Introduction

The geometrical theory of diffraction{GTD)[1] has been played a leading role in
analysis of high-frequency electromagnetic diffraction by conducting structures. But its
extention to diffraction by dielectric objects is hampered by no rigorous diffraction coefficients
of dielectric wedges and cones. In recent, the diffraction by a dielectric wedge has been
investigated by employing the formulation of dual integral equations(2]. According to the
dual integral equations, the exact diffraction coefficients become zero in the artificially
complementary region, in which the material inside(outside) the wedge is replaced by that
outside(inside) wedgel[3]l. To ilustrate its physical meaning clearly, the diffraction by a
perfectly conducting wedge is reconsidered here by solving the corresponding dual integral
equations exactly.

2. Dual integral equations
The geometry of a perfectly conducting wedge is shown in Fig. 1. The region of
perfectly conducting wedge consists of S; and S;, which are in the ranges of 0<8< 8; and

8,< <2z, respectively. When an E-polarized plane wave #; is incident on the wedge with
angle &; in the free space region S;, the total field # may be written as
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where & denotes 2-dimensional free space Green function.
Foilowing the same procedure as that developed for amalyzing the diffraction by a
dielectric wedgel[2], one may transform Eq.(1) into the dual integral equations as
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where k% denotes the wavenumber in S, and the operator F ~! denotes the operator of
2-dimensional inverse Fourier integral. And the spectral functions J; and J, are given
by
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3. Diffraction coefficients outside wedge region
The exact solution (0, 8) is well established in series form(4] as
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where [, denotes the -!‘y-—th order Bessel function. The value v is defined to satisfy the

edge condition at the tip of the wedgel5] as
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Applying Eq.(4) into Eq.(3), and then performing the discontinuous Weber-Schafheitlin
integral[6], one may obtain fi{a, 8) and Ja, B as
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Applying Eq.(6) into Eq.(2a), and then performing the 2-D inverse Fourer integral,
one may obtain the asymptotic integral form of #{p,8) as
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where P denotes the Sommerfeld integral path{7). If the region outside the wedge S is
defined in the range of 8, < w< 8,, the diffraction coefficients p(w) are expressed by

p(w) = p{w) +p{w) , in ,<w<b, (8a)
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It is well known that the diffraction coefficients in Eq.(8) are theoretically exact in the actual
free—space region outside the perfectly conducting wedge.

4. Diffraction coefficients in complimentary wedge region

Applying Ea.(6) into Eq.(2b), and then performing the 2-D inverse Fourier integral,
one may obtain the same form as that in Eq.(7)
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The remaining problem may be whether the diffraction coefficients p{w) of Eq.8) satisfy
Eq.{9 or not. To answer the above question, we must define the regions of S} and S; in

advance. Assume that the complementary wedge regions S, and S, are defined in the
range of 0<w<(#, and &, w<2z respectively. But one may easily proved that the
diffraction coefficients p{w) of Eq(8) camnot satisfy Eq.(9). As a typical example of
6,=60" ,6,=270" , and 6;=180" , Fig. 2 illustrates that #(w) in Eq.(8) becomes nonzero
in 0=w<# and 9,< w=2x

The above discrepancy may be arisen from the fact that the period of p{w) is not
27 but 27v. In a physical point, the induced sources Jfi(a,8) at 8=6, and Jia, B at
0=0; generate p(w) and py(w), respectively, in the actually free space region of
6 <w<§g, Both p(w) and p(w) are 2mv-periodic functions. Hence p(w) and p(w)
can exist only in the ranges of 6;<w and w<§,, respectively, as shown in Fig. 3.
Therefore, when S, and S; are defined in the range of 0<w<( 8, and 8,  w<2x,
respectively, #{w) should be changed as
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where p(w) and p{w) are given by Eqgs. (8b) and (8c), respectively. It can be easily
proved that p{w) in Eq.(10) satisfies Eq.(9) in the complimentary wedge region of 0< w<{ 8,
and 8,{w=2r. TFor the same example of 8,=60" ,8,=270" , and 6,=180" , Fig. 4
illustrates that #{w) in Eq.(10) becomes zero in 0< w< 8, and 6, w<2r.

5. Conclusion

According to the formulation of dual integral equations, the exact diffraction
coefficients of a perfectly conducting wedge have to become zero in the artificially
complimentary region inside the wedge, of which material is substituted by the same material
as that outside the wedge. To satisfy such a null-field condition in the extended region, the
angular range of the complimentary wedge region is defined differently accarding to the
components of the diffraction coefficients because the diffraction coefficients satisfy the edge
condition at the tip of the wedge. We are now trying to solve the diffraction from a wedge
composed of conductor and lossless dielectric by applying the presented null-field condition to
the corresponding dual integral equations.
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Fig. 1 Geometry of a perfectly conducting Fig. 2 Diffraction coefficients defined by
wedge illuminated by an E-polarized Eq.(8) for 6,=60" , 8,=270" ,
plane wave and 8,= 180"
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Fig. 3 Angular distribution ranges of 2,(w) Fig. 4 Diffraction coefficients defined by
and p.(w) radiated from the induced Eq.(10) for 6,=60" , 8,=270" ,
sources Ji{a,B) at 6=0 and Jy(a, B) and 4,= 180"

at 8= 8, respectively



