Risaburo Sato and Shigeru Sato

Faculty of Engineering, Tohoku University Sendai, Japan

§1 INTRODUCTION

In this paper, the characteristics of the elliptic loop antenna are discussed by expressing the electromagnetic field of the antenna in the elliptic-cylindrical coordinates.

§2 ELLIPTIC-CYLINDRICAL COORDINATES

The variables(\(\xi, \cdot, Z\)) are called the elliptic-cylindrical coordinates.

They are related to the rectangular coordinates by the eq.(1).

X=0.004 f.cost, y=0.004 find, Z=Z (1) where

o ≤ f ≤ ∞, -π ≤ f ≤ π, -∞ ≤ Z ≤ ∞

The coordinates surface,
f=constant, is a cylinder of
elliptic cross section, whose foci
are P1 and P2. The surface,
y=constant, represents a family of
conforcal hyperbolic cylinders of
two sheets as shown Fig. 1.

\$3 ELECTROMAGNETIC FIELD

On the assuming that a radius of the antenna is very small, the current source I(4) exsists in the center of the antenna wire and is a filament current having y component only.

 $P(\xi,\gamma,Z)$ on the ellipticcylindrical coordinates is a point of the current source and $P(\xi,\gamma,Z)$ is a observation-point.

Electric field at the observation-point is shown as the eq.(2).

Ey(\$, Y, Z) =
$$\int_{-\pi}^{\pi} I(y) \, \Phi(4 \, Y') \, dy \qquad (2)$$
where
$$\Phi(Y, Y') = \frac{1}{14\pi \omega \epsilon} \int_{Ank}^{\pi} \frac{1}{14\pi \omega \epsilon} \int_{Ank}^{\pi} \frac{1}{14\pi \omega \epsilon} \int_{Ank}^{\pi} \frac{1}{14\pi \omega \epsilon} \frac{1}{14\pi \omega \epsilon} \int_{A$$

γ is a distance between a current source-point and a observation-point, w is the angular frequency, k is the propagation constant, and a is the focal distance of the ellipse.

§4 FOURIER SERIES SOLUTION OF THE CURRENT DISTRIBUTION

The induced electric field by the driving potential difference V applied across the gap of the antenna is expanded to the Fourier series as shown the eq.(3).

series as shown the eq.(3). $E_{\gamma}'(\xi,\gamma,Z') = \sum_{i} V_{ei} e^{i\pi t} (3)$ where V_{m} is the Fourier coefficient.

In the eq.(2), I(χ) and G(χ , χ) are expanded to the Fourier series as shown the eq.(4).(5).

as shown the eq.(4),(5).

$$L(q) = \sum_{n=-\infty}^{\infty} I_n e^{2^{nq}}$$
(4)

where In and Am,n are the Fourier coefficients respectively.

From the eq.(2),(3),(4),(5), the coefficients of the Fourier series solution are given as the eq.(6)

where $[I] = \frac{1}{2\pi} [A]^{-1} [V] \qquad (6)$

[I]: column vector consisted of element In

[V]: column vector consisted

of element V_m
[A]⁻¹: inverse matrix of matrix
[A] consisted of element

Pig. (2), (3), (4), (5) are the examples of the current distribution and the radiation pattern respectively.

Fig.1 Elliptic-cylindrical coordinates

Fig.2 Absolute value and phase angle of I(4)

Fig.3 Absolute value and phase angle of I(Y)

$$\Omega = 2 \ln \frac{2L}{d} = 12$$

$$K = \frac{2L}{\pi} = 0.5$$

Fig.4 Horizontal electric field pattern

Fig.5 Horizontal electric pattern