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Abstract
Beam reconfiguration by structural reconfigurable antenna, such as the small flat multi-panel reconfigurable

reflector antenna, has an aspect of great concern that is the effects due to the use of a number of small panels to form
the reflecting surface. This paper has emphasis on theoretical study of neighboring panels blocking and diffraction
effects on the small flat multi-panel reconfigurable reflector antenna’s performance. The “null-field hypothesis” and the
physical theory of diffraction (PTD) are used to account for the effect of both phenomena on the ability in steering the
main beam and the contribution to the cross-polar component. It is found that the main contribution to the total cross
polarization is depolarization due to the finite size of the panels. The maximum cross-polar gain predicted using PTD is
around –30 dB. The neighboring panels blocking causes distortion on the co-polar pattern for the observer far off the
boresight.
I. Introduction

The structural reconfigurable reflector antenna can be used to produce the beam shape in response to
changing transmission demands [1,2] and can create nulls in order to counter the interference between different signal
frequencies [3,4]. In addition, it can steer the main beam to the desired direction [5,6]. An advantage of this antenna is,
it does not need any complex feed network that introduces high loss or phase shift of the transmitted or the received
signals. However it has some disadvantage due to interpanel gap loss, edge diffraction, and blocking from the
surrounding panels. In this paper the effect of edge diffraction and blocking on the ability in steering the main beam
and the contribution to the cross-polar levels are investigated. The methods for accounting the neighboring panels
blocking and the depolarizing effects of their edges are the “null-field hypothesis” [7] and the physical theory of
diffraction (PTD) [8,9]. The null field hypothesis assumes that no currents are excited on the shadowed panel cast by
the neighboring panels, and the currents do not radiate in the observation point direction. The ray approximation
technique [6] is used to steer the main beam by approximating the direction of the ray bundles that can possibly form
the desired beam direction.
II. The Small Flat Multi-Panel Reconfigurable Reflector Antenna
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                          Fig 1. Structure of a small flat                           Fig. 2. The reconfigurable reflector surface.
             multi-panel reconfigurable reflector antenna.

Beam reconfiguration of the small flat multi-panel reconfigurable reflector antenna is achieved by changing
the reflector surface. As shown in Fig. 1, this antenna is a sub-category of the reflector antenna which the flexible
reflector is approximated by many small flat panels. The approximate surface can reradiate the incident energy of the
feed and form the desired beam shape and direction by adjusting all panels mechanically.

In this work the reconfigurable reflector nominal surface is flat circular, with its surface divided into a number
of hexagonal panels as shown in Fig. 2. A single linearly polarized feed is placed at a position that ensures
symmetrical illumination on the reflector surface. The operating frequency is set to 4 GHz. The rotation angle of each
panel is set to be less than 45 degrees.

The following feed radiation pattern has been assumed in the analysis:
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III. Analysis Method
The analytical procedure is shown in Fig. 3. The physical optics expression for the electric fields radiated from

the reconfigurable reflector surface is given by
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Fig. 3. Analytical procedure.
The fringe fields radiated from the edges of each panel can be obtained by employing the PTD, thus
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2H′$  is the unit vector from the feed to the mth edge, 
2H$  is the unit vector from the mth edge to the observer, 

@@@@$ (('2 ′′−=
!!  is the unit vector tangent to the mth edge, 

2%$  is the unit normal vector of the panel, 
222 %'& $$$ ×= is the 

unit tangent vector of the panel outward from the mth edge to the surface, and #"•M  is the unit step function.
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                              Fig. 4. Neighboring panels blocking.                      Fig. 5. Ray approximation technique.



For neighboring panels blocking, after each panel has been adjusted, two types of shadows are cast on the
panel according to the null-field hypothesis as shown in Fig 4.

1)- Fields radiated from the feed may be blocked by neighboring panels. It causes no currents excited on
some regions of the panel. This region is called the “fixed shadow” because the shadows do not migrate
except when the feed is scanned.

2)- Fields radiated from the panel may be obstructed by the surrounding panels. It causes no radiation in the
observation direction as if there was no currents when observe from that observation point. This region is
called the “moving shadow” because the shadows move when the observer location changes.

From this hypothesis, the estimation of the blocking effects can be obtained by setting the physical optics
currents and the fringe currents on the panel to zero if these currents flow on the fixed and the moving shadow.
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Fig. 6. Checking for shadow casting.
Fig. 6 shows how one can check for shadow casting by surrounding panels. T is the test point on the panel.

Si is the triangle formed by the ith side of the polygon S and a distant observation point or the feed position O(x1,y1,z1). 
C is the center point of the polygon S. Qci is the center point of the triangle Si. T is on the same side with C on all sides 
of the polygon S if
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If A$$ =⋅TS  then the ray T$  is parallel to the polygon S where A$#" >⋅− TKI
!! , T lies in the shadow and 

A$#" <⋅− TKI
!! , T is outside the shadow else if A≤$&  then the intersection point is behind T (T outside the shadow)                       

else the intersection point is in front of T (T lies in the shadow).
-In order to steer the beam to the desired direction, the ray approximation technique is used to find the rotation

angle of the panels. It is assumed that the reflected ray bundles have the same wave front as the reflected ray at the
center of the panel as shown in Fig. 5. The rotation angle of each panel can be obtained by
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where !"#V 666666 $%&'$'()'()$%&''()$ θφθφθ ++=  is the unit vector in the desired direction #*" 66 φθ , R
$2H$  is the unit vector

of the incident ray at the center of the mth panel, and (6&
2

(6&
2 φθ *  are the rotation angle about the elevation and the

azimuthal axes of the mth panel respectively.
For the flat shape case, the accuracy of the ray approximation technique for steering the beam depends upon

the feed position (h). Numerical investigations [5,6] show that the suitable feed position is about 1.1-1.2 times of the
radius of the reconfigurable reflector.
IV. Numerical Results

The purpose of the numerical calculations is to illustrate the effects of both the edge diffraction and the
neighboring panels blocking on the co-polar and cross-polar patterns. The reconfigurable reflector studied consists of
19 hexagonal panels and the dimension of the reconfigurable reflector is shown in Fig. 2. The illuminating field is a y-
polarized raised cosine order 2 feed. Fig. 7-10 show the effects of both phenomena on the ability in steering the main



beam to 0, 20, 40, and 60 degrees from boresight. It is found that the main contribution to the total cross polarization is
depolarization due to the finite size of the panels. The PTD predictions of the cross-polar gain are larger than those
obtained using PO. The PO predictions of the cross-polar gain are very low (not shown in the figure). Relative to the
maximum co-polar gain the maximum cross-polar gain predicted  using  PTD is  around –30 dB. The blocking effects
have minor influence on the cross-polar pattern. Both phenomena cause distortion on the co-polar pattern for the
observer far from booresight but the neighboring panel blocking has more influence than the edge diffraction. The high
sidelobe levels are due to the flat reconfigurable reflector surface. From Fig. 9-10 it is seen that the spikes occur in the
pattern may be due to the Ufimtsev singularity of the untruncated EEC’s.

  
.CA .DA .+A .,A A ,A +A DA CA

.EA

.DA

.FA

.+A

.BA

.,A

.!A

A

GHI GJ -"?42/44' #

K
I
LJ
GM
N
I
-O
P
Q
I
K
-"
?R
#

.CA .DA .+A .,A A ,A +A DA CA
.EA

.DA

.FA

.+A

.BA

.,A

.!A

A

GHI GJ -"?42/44' #

K
I
LJ
GM
N
I
-O
P
Q
I
K
-"
?R
#

             Fig. 7. 0 degrees steering pattern.                      Fig. 8. 20 degrees steering pattern.

   
.CA .DA .+A .,A A ,A +A DA CA

.EA

.DA

.FA

.+A

.BA

.,A

.!A

A

GHI GJ -"?42/44' #

K
I
LJ
GM
N
I
-O
P
Q
I
K
-"
?R
#

.CA .DA .+A .,A A ,A +A DA CA
.EA

.DA

.FA

.+A

.BA

.,A

.!A

A

GHI GJ -"?42/44' #

K
I
LJ
GM
N
I
-O
P
Q
I
K
-"
?R
#

              Fig. 9. 40 degrees steering pattern.                  Fig. 10. 60 degrees steering pattern.
V. Conclusion

In this paper, neighboring panels blocking and diffraction effects on beam steering of the reconfigurable
reflector antenna has been studied. From numerical results, the blocking effects have minor influence on cross-
polarization. The panel’s edge diffraction is the main contribution to the total cross polarization. Both effects cause
distortion on the co-polar pattern for the observer far from boresight but the neighboring panels blocking has more
influence than the edge diffraction. In the future, the antenna pattern will be measured to compare with these results.
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