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1. INTRODUCTION

The use of several dielectric layers yields additional degrees of freedom to improve the perfor-
mance of microstrip antenna bandwidth, beamwidth, gain and efficiency [1]. A simple confi-
guration is a patch covered by a thin protective radome [2]. The cover layer may also be ice or
dust, that adversely affect the performance. A two-layer geometry was considered to study
electromagnetically coupled dipoles [3] and a proximity coupled patch [4]. Future monolithic
integrated arrays will mostly use a multilayered technology. Active devices may be integrated on
a lower substrate layer, and connected to antennas above. The active devices require high
permittivity substrates, whereas a low permittivity enhances the antenna's efficiency [S].

By stacking two patches in a double-layer substrate, the antenna's bandwidth can be increased,
up to 10%, while gains larger than 10 dB have been reported [6]. Dual frequency operation is
also possible with patches of different sizes [7].

The analysis of stacked patches presents a rather complex problem in electromagnetics, where
simple approaches like the cavity model fail. It can be handled with the more rigorous integral
equation approach. A full-wave treatment of stacked microstrip antennas in a double-layer
substrate was developed, using a mixed potential integral equation in the space domain
combined with a method of moments.

2. INTEGRAL EQUATION
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The structure considered, shown in figure 1, includes two dielectric layers with stacked
patches S1 and S2. An integral equation for the surface currents Js on both patches is deducted
from the continuity of the tangential electric field on a conducting object .
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where E is the excitation (impressed) field and E is the diffracted (induced) field, produced
by the surface currents. Conductor losses are accounted for by the surface impedance Zg , ratio
of the tangential electric field by the surface current density. The upper conductor thickness is
generally negligible when compared to the substrate, so that the radiating conductors can be

modeled by electric current sheets, and the surface impedance given by Zg =(1 +j) Yrfio/g.

The diffracted electric field is derived from a scalar potential V and a vector potential A,
expressed in terms of Green's functions that only exhibit weak singularities. The problem can
thus be solved in the space domain, where the physical interpretation is easier, and where
simple approximations can be obtained in the near and far fields. This approach was previously
developed for a single layer microstrip patch [8].In terms of the Green's functions for the

potentials G A and Gy ,acting respectively on the surface current density j s and on the surface
charge density P s, the boundary condition (1) becomes
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This is the mixed potential integral equation (MPIE), applied on the surface of both patches

S =S;US,; No magnetic currents are assumed to flow on the patches. This MPIE is a
Fredholm integral of the second kind, but since the term Zg Jg is usually quite small, it

behaves numerically as a Fredholm integral of the first kind. The dyadic Green's function EA
is given by (there are no vertical currents, hence no need to consider the zz - component):
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Where GAXX and GAZX are the components of the vector potential created by an x-directed

horizontal electric dipole. The scalars G and G a are obtained by a change of coordinates.

The microstrip structure is assumed to be infinite in the transverse directions, so that the
Green's functions exhibit a translational invariance along x and y.The Green's function Gy
associated with the scalar potential is defined by :

V:Ga=neVGy (4)

In free space, Ga=Upo¥ with ¥ = exp(-jkgt) / 4nr where U is the unit dyadic, and then
Gy="¥/¢€;. The situation gets more involved in stratified media [8]

3. NUMERICAL ALGORITHMS

The integral equation is solved with a method of moments, using identical basis and test
functions (Galerkin). Our calculations consider rectangular patches, on which the entire domain
basis functions are the eigenmodes associated with the patches. On more complicated
geometries, subsectional basis functions such as those employed for the single layer case [8]

can be introduced. Let :fs be the surface current density on the patch at the interface between
layers i-1 and i.:
Nj
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where aj, bj are the dimensions of the i - th. patch and the integers my, nx, my, ny refer to the
eigenmode considered and are functions of the indexes k and i. In general, if'y we select Nj non

zero modes to expand the unknown fs, the total number of unknowns in the method of
moments will be N = N1 + N2. Associated with the current there is a surface charge given by
the continuity equation as :
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The excitation considered here is a coaxial probe attached to the lower patch and modelled by a
zero thickness filament of current I. Consequently, according to continuity equation, the

excitation charge is a point charge +1 / jo located at the probe's insertion point. The application
of the method of moments then proceeds along well known steps, and finally the integral

equation reduces to a matrix equation Ca = b which is solved for the unknown amplitudes ag
and ayy.In general the matrix C contains elements of the form :
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and the excitation terms are of the form :

b1j=f5jGVh1dej (8)

A succesful numerical analysis must include an efficient and accurate technique to evaluate the
Green's functions, expressed by Sommerfeld integrals over a semi-infinite interval (Hankel
transforms), for which specific algorithms were developed. For the single layer case, they were
given in a previous publication [8]. The integrands become more involved in the double layer
case, but the numerical techniques developed previously are still useful. Even with pre-
computed Green's functions stored in interpolating tables, the numerical evaluation of the
matrix is very cumbersome due to four-fold integrals. Fortunately, the change of variables

X -X'=p, y-y=q X+X' =py yty =qp (11)

reduces the problem to a double spatial integration on p;, q;. Integrations over p, and q, are
performed analytically A transformation to polar coordinates removes the spatial singularity in
the diagonal terms. This feature reduces considerably the CPU time and increases the
integration's accuracy .Once the matrix equation has been solved and the amplitude coefficients
ak1, ak2 are known, the input impedance to the coaxial-fed stacked antenna is computed by
evaluating the voltage at the insertion point [8].

4. RESULTS

Figure 2 depicts the first configuration analyzed and measured, designed to work as a dual

frequency antenna. The substrate is composed of two identical layers with er = 2.33, tan 8 =
0.0012 and h = 0.51 mm.. The lower patch is 28 X 18 mm., fed by a coaxial probe centered
along the y - coordinate and at 10 mm. from the edge. The upper patch has the same width (18
mm.) but is slightly longer (31.2 mm.) to provide dual frequency operation. The theoretical
analysis is performed with one mode per patch. The theoretical predictions (dotted line) are
compared to the experiment (solid line). . The discrepancy between predicted and measured
resonant frequencies is less than 1 % at the lower resonance and 4 % at the higher resonance.
These errors may be due to the glue (cyanolit) between the two layers.
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The second configuration (fig. 3), with two identical stacked square patches (8X8 mm.),

provides broadband operation. The two layers are identical (er] = &r2 =2.33,tan 8] =tan 82 =
0.001 h1 = h2 = 1.57 mm.). The lower patch is excited along its diagonal at 2.8 mm. from a
corner. The upper patch is shifted 1 mm. in the x - direction (offset stacked patches). The
theoretical results agree well with measurement.over the range 8.5 - 11 GHz, showing the
accuracy of the numerical technique. Here 2 modes per patch were used in the computation.
After matching, the bandwidth for a VSWR less than 2 is expected to be greater than 15%, .

5. CONCLUSION

A rigorous technique is presented to analyze stacked microstrip patches in a two-layer
environment. The mixed potential integral equation is solved with a method of moments and
theoretical results for the input impedance of a two layer patch are in good agreement with
measurements. The slight deviation between the curves is attributed to tolerance errors in the
permittivity and the loss tangent as well as construction defects. While the resonant frequencies
are primarily determined by the patch length , they are significantly affected by the coupling.
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Fig. 2 : Input impedance of the dual frequency Fig. 3 : Input impedance of the broadband
stacked antenna between 3.08 and 3.68 GHz  stacked antenna between 8.5 and 10 GHz
(0.1 GHz frequency step) (0.25 GHz frequency step)

Solid line : experimental data ; dotted line : experiment
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