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Introduction

Due to its wideband properties and reduced size, an open-ended ridged
wavequide has been used as a phased array element for wideband and wide angle
scanning, Montgomery [1] has applied the complete solution [2] of ridged
waveguide to a phased array boundary value problem and shown that wide band
matching can be done for a particular size of ridged waveguide element.

The work of Wang et al. (2] has been a parametric study in the case of
ultra wideband of 40% and 58%.

Depending on the numerical method (1], this paper is directed to make
clear some fundamental effects of ridge insertion on the unmatched aperture
performance of a rectangular double ridged waveguide element in an equilateral
triangular arrangement.

Array and Waveguide Parameters

Figure 1 shows double ridged waveguide elements in an equilateral
triangular arrangement. We deal with a horizontal arrangement only as in
Fig.l due to its less difficulty of matching than a vertical one [4]. The
geometry of a double ridged waveguide is shown in Fig.2, If a phased array
of Fig.l has a conical scan coverage of ©jM with respect to its normal
(z-axis) and a 5% reduction [4) of dx and dy is adopted, we may write

2N
dx = 0.95 (m—) (1)
and
dy = ax/f3 (2)
where N is the free space wavelength. From Fig.l the dimension a2 should be
az & (dx/2) - w (3)
and a4 is set here as an upper limit
agq =(dy/4)~ w (4)

Also, it is assumed as aj/ap=0.2 and w= A/20., Letting £ and f ] be the
operating freguency and the cutoff frequency of a dominant waveguide mode,
respectively, we impose the condition

£c1/ £ = 0.7 (5)

on the parameters as and ajz. In determining eigenvalues of ridged waveguide
modes by the Galerkin method {2], numbers of expantion terms are set as
L=3 and M=10.
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Under these constraints, the relation between az and a3 is shown in
Fig.3 for ©M=30°, 60°, and the eigenvalues of first four modes, i.e., TE19
(dominant mode), TEzp, TEp), and TE;;, are shown in Fig.4 for ey=60°.

In computing the active impedance of a phased array element, the total number
of both TE and TM unit cell modes is chosen as 121.

Numerical Results and Discussion

The loci of active impedance of ridged waveguide phased array for
6y =60° with parameters of ap/a =0.25, 0.35 are shown in Fig.5, in which
scan planes are @ =0°, 30°, 60°, 90° with scan angle 0 < © < Oy (=60°)
sampled in 20° intervals. Figure 6 shows the maximum VSWR versus az/A for
OM=30°, 60°. It is worth noting that those worst values occur at the edges
of scan plane of g=0°, i.e., H-plane. It is seen from Fig.5 that the locus
of active impedance moves with increasing ¢ towards less capacitive region.
The most important thing in Fig.6 is that the maximum VSWR value decreases
with increasing the dimension aj;. 1Increasing a3 corresponds to increasing
a3 as in Fig.3, and then waveguide configuration becomes nearly conventional
rectangular waveguide with wide "a" dimension.

On the other hand,only the dominant TEjo mode was employed in Figs. 5 and
6 except for the case of apz/ )\ =0.35 since cutoff frequencies of higher modes
decrease with increasing a2 as in Fig.4. Comparison of active reflection
coefficients between cases of different number of waveguide modes is shown
in Table I. It is seen from Table I that waveguide higher modes have much
influence on the aperture performance in the case of large dimension of az.
However, the deviation from the case of number of modes, I=4 is 7.4% for
a3/ N =0.35 and this is not seriously too large. Hence, employment of only
the TE1p mode is sufficient to know the qualitative characteristics of such
a phased array element in the first stage of the element design., This will
also save much of the computational time.

Conclusion

From numerical results, it is concluded as follows;

{1) Best ridged wavequide configuration for relatively narrow band use may
be nearly rectangular waveguide with large "a" dimension.

(2) The dominant mode itself will give sufficient informations on the active
aperture performance of ridged waveguide phased array elements in an equilat-
eral triangular arrangement.
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Fig.5. Active impedance of a ridged waveguide
phased array (6H=6° e
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Fig.6. Maximum VSWR values of a ridged wave-
guide phased array.
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