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A TIME DOMAIN INTEGRAL EQUATION SOLUTION

FOR THIN WIRE DIPOLES
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The behavior of a thin wire under
the excitation of an arbitrary incident
electric field E1NC can be described by
a time domain integral equation which
contains no derivatives at all. The so-
lution of this integral equation, which
corresponds to Hallen's integral equa-
tion, which corresponds to Hallen's in-
tegral equation in the frequency domain,
is carried out by numerical methods on
a digital computer, and has advantages
in terms of speed and accuracy over the
solution of an integro-differential
equation method. 1,

For a straight thin wire, the in-
tegral equation is of the form
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where I(z,t) is the current on the an-
tenna at time t, position z, a is the
radius, L is the length of the wire, and
n is the wave impedance of the medium,
The two arbitrary functions, f3 and f,
arise from the solution to the homogene-
ous wave equation and are evaluated sub-
ject to the boundary condition that cur-
rent vanishes at both ends of the wire.
The integral involving the current is
numerically approximated by a summation.
The curreat I at a point (23, tj) can be
obtained if the current values prior to
time t; along the two characteristic

curves t = ty ~
zl—z
ty + = for z > z1 are known.
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procedure thus yields a step-by-step
time marching solution, which is started
with the most common initial condition
that the wire is initially relaxed.

The calculated transient response
results can be Fourier transformed to
compare with the frequency domain re-
sults. As an example, the transient
current response due to a Gaussian input
waveform is converted to yield the input
admittence of the center-driven wire as
a function of frequency. The result is
given in Fig. 1 for an antenna with =
2 log L/a = 10 and shows good agreement
with that calculated by the frequency
domain method.

This method is extended to the case
of coupled parallel dipoles., For N di-
poles, the integral equation becomes
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where the subscript j denotes the dipole
on which z is located, bij is the per-
pendicular separation between wires 1
and j, and a; is the radius of wire j.
This equation can be solved numerically
in a manner similar to that of (l1). As
an example, the case of a pair of non-
staggered, identical, parallel coupled
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dipoles geparated at a distance equal to tennas, = 2 log L/a = 8.5, where L
half the length of the dipoles is con- s the length and a is the radius of
gidered. With antenna 1 center-driven the antennas,
by a Gaussian input waveform and antenna
2 ghort-circuited at the center, the
self and mutual admittances are related
to the Fourier transforms of the cur-
rents at the centers of antenna 1 and
antenna 2, respectively. The result is
presented in Fig. 2 and shows good a-
greement with frequency domain calcu-
lation by Chang and King.4

The time domain integral equation v v
method is not only good for studying 05 10 e 20
transient responses of dipoles, but is (o)
also an efficient method to study di-
pole antennas in the frequency domain.
As an example of its efficiency, the
computation time for the result pre=~
sented in Fig. 1, which is actually re-
liable up to L/A = 4 with 64 data points
takes approximately 32 seconds on a CDC
6400 computer. This is a saving by a
factor of at least 5 over the frequency
domain method of comparable accuracy.
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FIGURE CAPTIONS

Fig. 1 1Input admittance of a center-fed
antenna with = 2 log L/a = 10,
where L is the length and a is the
radius of the antenna.

Fig. 2 (a) Self admittance and (b)
Mutual admittance of a pair of non-
staggered, identical, coupled paral-
lel antennas separated at a distance
equal to half the length of the an-
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Fig. 2.



