Multi-Reflector Offset Antennas Eliminating Cross-Polarization

Component Based on Beam Mode Analysis

Takayoshi FURUNO^{+}, Shuji URASAKI ${ }^{+}$, and Takashi KATAGII ${ }^{+}$
${ }^{+}$Advanced Space Communications Research Laboratory
2-12-5 Iwamoto-cho, Chiyoda-ku, Tokyo 101-0032, Japan
${ }^{++}$Mitsubishi Electric Corporation
5-1-1 Ofuna, Kamakura-shi 247-8501, Japan
email: furuno@asc.co.jp

1. Introduction

Offset antennas have more efficient and desirable wide-angle radiating characteristics than rotationally symmetric parabolic antennas and Casegrain antennas because there is no blocking due to the conical horn, sub-reflector, and supporting members. However, in space communications and microwave relay links, two orthogonal polarizations are used In that case, the cross-polarization component that appears in the transverse plane due to the asymmetric reflectors is a problem. The cross-polarization elimination condition for the trireflector offset antennas was already derived [1].

In this paper, the general crosspolarization elimination condition for the multireflector offset antennas is derived by considering the phase of the crosspolarization component generated by each reflector. It is clarified that the derived condition is a geometrical relationship independent of the frequency. Further, the possible configurations obtained by applying this condition to a four-reflector beam waveguide feed are shown.

2. Derivation of the cross-polarization elimination condition

In a multireflector offset antenna consisting of a conical horn and many reflectors as shown in Fig. 1, if the unit vector in is taken on the plane that contains all foci of each reflector, $\mathbf{k n}_{\mathbf{n}}$ and $\mathbf{i n}^{\text {lie }}$ in the same plane, and $\mathbf{j} \mathbf{n}$ is perpendicular to the plane. Furthermore, let ω_{n} be the beam radius of the nth reflector, and Rn and Rn ' be the radii of curvature of the wave front of the incident and reflected side of the nth reflector; then, the focal length fn of the nth reflector is related by
$\frac{1}{f_{n}}=\frac{1}{R_{n}}-\frac{1}{R_{n}^{\prime}}$
where, $\mathrm{n}=1,2, \cdots, \mathrm{~N}$. When the focal point is on the propagating direction of the ray, the signs of R_{n} and R_{n} ' become negative (-). The reflector then becomes concave if fn is positive and convex if fn_{n} is negative. The distance dn and the angleo n are as defined in Fig. 1. From the results in [2], the ratio Cn_{N} of the peak value of the crosspolarization component to that of the copolarization component is given by
$C_{N}=\frac{1}{\sqrt{2 e}}\left\{\sum_{n=1}^{N}(-1)^{n} \frac{q_{n} \omega_{n}}{f_{n}} \tan \frac{\sigma_{n}}{2}\left(\prod_{i=1}^{n-1} e^{-j \theta_{i}}\right)\right\}$
$=\frac{1}{\sqrt{2 e}}\left\{a_{1}+\sum_{n=2}^{N} a_{n}\left(\prod_{i=1}^{n-1} x_{i}\right)\right\}$
where
$a_{n}=(-1)^{n} \frac{q_{n}}{f_{n}} \tan \frac{\sigma_{n}}{2}$
$q_{n}=\operatorname{sign}\left(j_{1} \cdot k_{n} \times k_{n+1}\right)$
$X_{n}=\frac{\omega_{n+1}}{\omega_{n}} e^{-j \theta_{n}}$
$e^{-j \theta_{n}}=\frac{1}{u_{n}}\left(\varepsilon_{n} \sqrt{u_{n}^{2}-1}-j\right)$
$u_{n}=\frac{\pi \omega_{n} \omega_{n+1}}{\lambda d_{n}}$
$\varepsilon_{n}=\operatorname{sign}\left(\frac{1}{R_{n}{ }^{\prime}}+\frac{1}{d_{n}}\right)$
and λ is the free-space wavelength.
The relation between $\omega \mathrm{n}$ and $\omega \mathrm{n}+1$ is derived by means of the relationship among the beam mode parameters [3] as follows:
$\frac{\omega_{n}^{2}}{\omega_{n+1}^{2}}=\frac{v_{n}^{\prime} R_{n}^{\prime}}{v_{n+1} R_{n+1}}=\frac{1+v_{n}^{\prime 2}}{v_{n+1}^{2}}$
where
$\frac{v_{n+1}}{v_{n}^{\prime}}=1+\frac{d_{n}}{R_{n}^{\prime}}\left(1+\frac{1}{v_{n}^{\prime 2}}\right)$.
The following relations are derived using this result:
$\frac{\omega_{n}^{2}}{\omega_{n+1}^{2}}=\frac{Y_{n}}{Y_{n}^{\prime}}$
$Y_{n}=1-\frac{d_{n}}{R_{n+1}}$
$Y_{n}^{\prime}=1+\frac{d_{n}}{R_{n}}$
and also
$\frac{\varepsilon_{n} \sqrt{u_{n}^{2}-1}}{u_{n}}=\frac{\omega_{n}}{\omega_{n+1}} \cdot Y_{n}$,
$\frac{1}{u_{n}^{2}}=1-Y_{n} Y_{n}^{\prime}$.
Therefore, X_{n} in (3) is rewritten as follows:
$X_{n}=Y_{n}^{\prime}-j Z_{n}$
$Z_{n}=\frac{\omega_{n+1}}{\omega_{n}} \cdot \frac{1}{u_{n}}$.
Then, from (8) and the fifth equation in (3), we obtain
$X_{n-1} \cdot X_{n}=\left(Y_{n-1}^{\prime}-j Z_{n-1}\right)\left(Y_{n}^{\prime}-j Z_{n}\right)$
$=h_{n} X_{n-1}-\frac{d_{n}}{d_{n-1}}$
$h_{n}=1+\frac{d_{n}}{d_{n-1}}-\frac{d_{n}}{f_{n}}$.
From the first equation in (9), we obtain
$X_{1} \cdot X_{2}=h_{2} X_{1}-\frac{d_{2}}{d_{1}}$
$X_{1} \cdot X_{2} \cdot X_{3}=\left(h_{3} \cdot h_{2}-\frac{d_{3}}{d_{2}}\right) X_{1}-h_{3} \cdot \frac{d_{2}}{d_{1}}$.
Therefore, the following equation can be expressed:
$\prod_{i=1}^{n-1} X_{i}=P_{n} X_{1}+Q_{n}$.
Then, from (11) and the first equation in (9), we obtain

$$
\begin{align*}
& \prod_{i=1}^{n} X_{i}=P_{n+1} X_{1}+Q_{n}=X_{n} \prod^{n-1} X_{i} \\
& =\left(h_{n}-\frac{d_{n}}{d_{n-1}} \cdot \frac{1}{X_{n-1}} \prod_{i=1}^{n-1} X_{i}\right. \tag{12}\\
& =h_{n} \prod_{i=1}^{n-1} X_{i}-\frac{d_{n}}{d_{n-1}} \prod_{i=1}^{n-2} X_{i} .
\end{align*}
$$

By means of the relationship between (11) and (12), we obtain the following recursion relation:
$P_{n+1}=h_{n} P_{n}-\frac{d_{n}}{d_{n-1}} \cdot P_{n-1}$
$Q_{n+1}=h_{n} Q_{n}-\frac{d_{n}}{d_{n-1}} \cdot Q_{n-1}$
where $\mathrm{P}_{1}=0, \mathrm{Q}_{1}=1$ and $\mathrm{P}_{2}=1, \mathrm{Q}_{2}=0$ are derived from (2) and (11).

From these results, equation (2) is represented by

$$
\begin{align*}
& C_{N}=\frac{\omega_{1}}{\sqrt{2 e}}\left\{a_{1}+\sum_{n=2}^{N} a_{n}\left(P_{n} X_{1}+Q_{n}\right)\right\} \\
& =\frac{\omega_{1}}{\sqrt{2 e}}\left\{a_{1}+\sum_{n=2}^{N} a_{n} Q_{n}+\left(\sum_{n=2}^{N} a_{n} P_{n}\right) X_{1}\right\} . \tag{14}
\end{align*}
$$

The condition for designing multireflector offset antennas without a crosspolarization component is $\mathrm{C}=0$. From equation (14), we obtain the following equations:
$\sum_{n=1}^{N} a_{n} P_{n}=0$
$\sum_{n=1}^{N} a_{n} Q_{n}=0$
where
$a_{n}=(-1)^{n} \frac{q_{n}}{f_{n}} \tan \frac{\sigma_{n}}{2}$
$P_{1}=0 \quad Q_{1}=1$
$P_{2}=1 \quad Q_{2}=0$
$P_{n+1}=h_{n} P_{n}-\frac{d_{n}}{d_{n-1}} \cdot P_{n-1}$
$Q_{n+1}=h_{n} Q_{n}-\frac{d_{n}}{d_{n-1}} \cdot Q_{n-1}$
$h_{n}=1+\frac{d_{n}}{d_{n-1}}-\frac{d_{n}}{f_{n}}$.
The cross-polarization elimination condition in equation (15) is a geometrical relationship independent of frequency because qn , an, dn , and fn are constant. Hence, in the reflector system satisfying this relationship, the cross-polarization component is not generated regardless of frequency.

3. Four-reflector beam waveguide feeds

Figure 2 shows a typical beam waveguide feed using three focusing reflectors, a plane reflector and a corrugated horn. Substituting $N=4$ into (15), we obtain the following equations:
$a_{1}=\frac{d_{2}}{d_{1}}\left(a_{3}+h_{3} a_{4}\right)$
$a_{2}=\frac{d_{3}}{d_{2}} \cdot a_{4}-h_{2} \cdot \frac{d_{1}}{d_{2}} \cdot a_{1}$
where

$$
\begin{array}{ll}
a_{1}=-\frac{q_{1}}{f_{1}} \tan \frac{\sigma_{1}}{2} & a_{2}=\frac{q_{2}}{f_{2}} \tan \frac{\sigma_{2}}{2} \\
a_{3}=-\frac{q_{3}}{f_{3}} \tan \frac{\sigma_{3}}{2} & a_{4}=\frac{q_{4}}{f_{4}} \tan \frac{\sigma_{4}}{2} \tag{18}\\
h_{2}=1+\frac{d_{2}}{d_{1}}-\frac{d_{2}}{f_{1}} & h_{3}=1+\frac{d_{3}}{d_{2}}-\frac{d_{3}}{f_{3} .}
\end{array}
$$

The cross-polarization elimination condition of these beam waveguide feeds can be derived by substituting $1 / f_{4}=0$ into (18) as follows. This equation means a geometrical relationship not related to the frequency.

$$
\begin{align*}
& f_{1}=\frac{q_{1} d_{1} f_{3} \tan \left(\sigma_{1} / 2\right)}{q_{3} d_{2} \tan \left(\sigma_{3} / 2\right)} \\
& f_{2}=\left\{\frac{q_{2} f_{3} \tan \left(\sigma_{2} / 2\right)}{q_{3} d_{2} \tan \left(\sigma_{3} / 2\right)}\right\} /\left(\frac{1}{d_{1}}+\frac{1}{d_{2}}\right) . \tag{19}
\end{align*}
$$

From (19), since d1, d2, $\tan (\sigma 1 / 2)$ and $\tan (\sigma 2 / 2)$ are positive, we can then define the following:

$$
\begin{align*}
& \operatorname{sign}\left(f_{1}\right)=\operatorname{sign}\left(q_{1} q_{3} f_{3}\right) \\
& \operatorname{sign}\left(f_{2}\right)=\operatorname{sign}\left\{\frac{q_{2} q_{3} f_{3} \tan \left(\sigma_{2} / 2\right)}{d_{2} \tan \left(\sigma_{3} / 2\right)}+1\right\} . \tag{20}
\end{align*}
$$

Therefore, from the first equation in (20), in Fig. 2a, the first focusing reflector is convex if the third focusing reflector is concave and is concave if the third focusing reflector is convex. Furthermore in Fig. 2b, the first focusing reflector is concave if the third focusing reflector is concave and is convex if the third focusing reflector is convex.
From the second equation in (20), the configuration of the second focusing reflector is classified as follows:
(i) For the the concave third reflector,
in Fig. 2a, the second focusing reflector always becomes concave.
In Fig. 2b, the second focusing reflector becomes convex when the following equation is satisfied:
$\frac{f_{3}}{d_{2}}>\frac{\tan \left(\sigma_{3} / 2\right)}{\tan \left(\sigma_{2} / 2\right)}$.
Also, the second focusing reflector becomes concave when the following equation is satisfied:
$\frac{f_{3}}{d_{2}}<\frac{\tan \left(\sigma_{3} / 2\right)}{\tan \left(\sigma_{2} / 2\right)}$.
(ii) For the convex third reflector,
in Fig. 2a, the second focusing reflector becomes convex when the following equation is satisfied:
$\frac{f_{3}}{d_{2}}<-\frac{\tan \left(\sigma_{3} / 2\right)}{\tan \left(\sigma_{2} / 2\right)}$.
Also, the second focusing reflector becomes concave when the following equation is satisfied:

$$
\begin{equation*}
\frac{f_{3}}{d_{2}}>-\frac{\tan \left(\sigma_{3} / 2\right)}{\tan \left(\sigma_{2} / 2\right)} . \tag{24}
\end{equation*}
$$

In Fig. 2b, the second focusing reflector
always becomes concave. From the above, it is clarified that the four-reflector beam waveguide feed has the six possible configurations shown in Fig. 3.

4. Conclusions

A general cross-polarization elimination condition was derived for multireflector offset antennas. It was proven that this condition is a geometrical relationship independent of frequency. The necessary conditions for four-reflector beam waveguide feed configurations with no crosspolarization component were also presented. In actual design, the possible configurations are restricted by the values of design parameters as defined in Fig. 2, and the best configuration must be selected.

References

[1]T. Furuno, S.Urasaki, and T.Katagi," Tri-
Reflector Antennas Eliminating CrossPolarized Component Based on BeamMode Analysis," I.E.I.C.E. Trans. (B-II), J78-B-II ,9,pp.585-592(Sept. 1995).

(a) $q 1=-1, q 2=+1, q 3=+1 \quad$ (b) $q 1=-1, q 2=+1, q 3=-1$

Fig. 2 Four-reflector beam waveguide feeds.
[2]T. Katagi, S. Urasaki, S. Ebisui, and S. Betsudan,"Analysis and Design Method of Beam Waveguide Feeds by Beam Mode Expansion," I.E.I.C.E. Trans. (B), J66B, 3, pp.305-312 (March 1983).
[3]S. Betsudan, T. Katagi, and S. Urasaki,"
Design Method of Four-Reflector Type
Beamwaveguide Feeds," I.E.I.C.E. Trans.
(B), J67-B, 6, pp.622-629 (June 1984).

Fig. 1 Multireflector offset antennas.

Fig. 3 Possible configurations of a fourreflector beam waveguide feed.

