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1. Introduction
      Offset antennas have more efficient
and desirable wide-angle radiating charac-
teristics than rotationally symmetric par-
abolic antennas and Casegrain antennas
because there is no blocking due to the
conical horn, sub-reflector, and supporting
members. However, in space communi-
cations and microwave relay links, two
orthogonal polarizations are used. In that
case, the cross-polarization component
that appears in the transverse plane due to
the asymmetric reflectors is a problem. The
cross-polarization elimination condition for
the trireflector offset antennas was already
derived [1].
      In this paper, the general cross-
polarization elimination condition for the
multireflector offset antennas is derived by
considering the phase of the cross-
polarization component generated by each
reflector. It is clarified that the derived
condition is a geometrical relationship in-
dependent of the frequency. Further, the
possible configurations obtained by
applying this condition to a four-reflector
beam waveguide feed are shown.

2. Derivation of the cross-polarization
   elimination condition
  

      In a multireflector offset antenna
consisting of a conical horn and many
reflectors as shown in Fig. 1, if the unit
vector in is taken on the plane that contains
all foci of each reflector, kn and in lie in the
same plane, and jn is perpendicular to the
plane. Furthermore, let ωn be the beam
radius of the nth reflector, and Rn and Rn’
be the radii of curvature of the wave front of
the incident and reflected side of the nth
reflector; then, the focal length fn of the nth
reflector is related by
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where, n=1,2,…,N. When the focal point is
on the propagating direction of the ray, the
signs of Rn and Rn’ become negative (-). The
reflector then becomes concave if fn is
positive and convex if fn is negative. The
distance dn and the angleσn are as defined
in Fig. 1. From the results in [2], the ratio
CN of the peak value of the cross-
polarization component to that of the co-
polarization component is given by
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where
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and λ is the free-space wavelength.
The relation between ωn and ωn+1 is
derived by means of the relationship
among the beam mode parameters [3] as
follows:
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The following relations are derived using
this result:
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and also
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Therefore, Xn in (3) is rewritten as follows:
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Then, from (8) and the fifth equation in (3),
we obtain
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From the first equation in (9), we obtain
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Therefore, the following equation can be
expressed:
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Then, from (11) and the first equation in (9),
we obtain
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By means of the relationship between (11)
and (12), we obtain the following recursion
relation:
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where P1=0, Q1=1 and P2=1, Q2=0 are
derived from (2) and (11).
      From these results, equation (2) is
represented by
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The condition for designing multireflector
offset antennas without a cross-
polarization component is C=0. From
equation (14), we obtain the following
equations:
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where

( )

.1

01
10

2
tan1

1

1
1

1

1
1

1

22

11

n

n

n

n
n

n
n

n
nnn

n
n

n
nnn

n

n

nn
n

f

d

d

d
h

Q
d

d
QhQ

P
d

d
PhP

QP

QP

f

q
a

−+=

⋅−=

⋅−=

==
==

−=

−

−
−

+

−
−

+

σ

             (16)

The cross-polarization elimination condi-
tion in equation (15) is a geometrical
relationship independent of frequency
because qn, an, dn, and fn are constant.
Hence, in the reflector system satisfying
this relationship, the cross-polarization
component is not generated regardless of
frequency.

3. Four-reflector beam waveguide feeds
      Figure 2 shows a typical beam
waveguide feed using three focusing reflec-
tors, a plane reflector and a corrugated
horn. Substituting N=4 into (15), we obtain
the following equations:
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where
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The cross-polarization elimination condi-
tion of these beam waveguide feeds can be
derived by substituting 1/f4=0 into (18) as
follows. This equation means a geometrical
relationship not related to the frequency.
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From (19), since d1, d2, tan(σ1/2) and
tan(σ2/2) are positive, we can then define
the following:
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Therefore, from the first equation in (20), in
Fig. 2a, the first focusing reflector is convex
if the third focusing reflector is concave and
is concave if the third focusing reflector is
convex. Furthermore in Fig. 2b, the first
focusing reflector is concave if the third
focusing reflector is concave and is convex
if the third focusing reflector is convex.
From the second equation in (20), the
configuration of the second focusing
reflector is classified as follows:
(ⅰ) For the the concave third reflector,
in Fig. 2a, the second focusing reflector
always becomes concave.
In Fig. 2b, the second focusing reflector
becomes convex when the following
equation is satisfied:
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Also, the second focusing reflector becomes
concave when the following equation is
satisfied:
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(ⅱ) For the convex third reflector,
in Fig. 2a, the second focusing reflector
becomes convex when the following
equation is satisfied:
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Also, the second focusing reflector becomes
concave when the following equation is
satisfied:
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In Fig. 2b, the second focusing reflector
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Fig. 3 Possible configurations of a four-

      reflector beam waveguide feed.

always becomes concave. From the above,
it is clarified that the four-reflector beam
waveguide feed has the six possible
configurations shown in Fig. 3.

4. Conclusions
      A general cross-polarization elimina-
tion condition was derived for multireflec-
tor offset antennas. It was proven that this
condition is a geometrical relationship
independent of frequency. The necessary
conditions for four-reflector beam wave-
guide feed configurations with no cross-
polarization component were also
presented. In actual design, the possible
configurations are restricted by the values
of design parameters as defined in Fig. 2,
and the best configuration must be
selected.
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