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The paper considers a receiving
situation where a distant signal arrives
at a site as several components from
different directions and with different
time (phase) delays. The components
are mutually coherent and add vectori-
ally to form a standing wave pattern
over the gite. The site is a horizontal
plane with positions specified by x-y
coordinates. The field over the site is
sampled as by elements of an array an-
tenna. The goal is to determine from
these measurements the number of the
multipath components and the amplitude
and the directions of each component.

Conventionally this is done by con-
necting the elements together to form
an array and by steering the main beam
of the radiation pattern over the hemi-
sphere. Watterson", uging antenna
aperture synthesis and measuring both
amplitude and phase of the field, was
able to identify the various components
by analysis of the data. This paper dem-
onstrates that it is possible to do so
using amplitude measurements alone.

In a model of n multipath compon-
ents consider the i-th component: its
azimuthal angle of arrival is ¢y, meas-
ured from +Y axis; its elevation angle
of arrival is 6;. The phase, ¥,, of the
i-th component is measured at theorigin.
The field at x, y due to the i-th compon-
ent is then

Eq(x,y) = Eq exp j[ 21/ A(x sin @,

(1)

Since the total field at the point x, vy is
the vector sum of the n coherent com-

ponents, it is given simply by summa-
tion
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+ y cos ;) cos 8y + ¥,] . (2)
A crucial point in this presentation is a
demonstration that the standing wave
pattern of the received field is more
tractable to analyeis if expressed in
terms of field intensity (power incident
per unit area) than as field strength.
Conventionally, field strength can be
converted to intensity by multiplying it
by its conjugate. That is done here ex-.
cept that in the process of multiplication
the field strength is left in the form of
polynomial (2), and its conjugate is cast
in the form of another polynomial each
term of which is a conjugate of the cor-
responding term in the expression for
the field. Thus,
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When multiplied out term by term, the

resulting expression is in the form

Plx,y) = E(x,y) - E*(x,y) = E} + E}
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Only two terms, i-th and j-th, are ‘
shown to avoid clutter. The two cross-
products of the i-th and j-th terms are
readily seen to be combinable into a
cosine term. Extending this to n terms,
the field intensity, P(x,y), is seen to be

in the form
n n-1 n

P(x,y) =Z‘E,3+Z Z 2 EE,
1= 1=1 j=1+1

cos[ 21/ AM(x(sin @; cos &,
- 8in®, cos §;)+ y(cos @, cos &,
- cos®g cos &,)) + (Uy - ¢4)] . (5)

Examination of the above expression
shows that the field intensity pattern
consgigts of a constant term plus a
series of cosine terms. The constant
term equals the algebraic sum of the
individual component intensities. The
amplitudes of the cogine terms are
twice the product of amplitudes of two
of the components; their arguments are
determined by the direction angles of
the two components; their phase is the
difference in the phases of the two com-
ponents. Since the sinugoidal terms are
formed by combining components, two
at a time, the total number of sinugoidal
periodicities is n(n-1)/2.

The form of the standing wave pat-
tern, a sum of sinusoidal periodicities,
permits analysis using the search for
hidden periodicities. Techniques for
this are described in publighed litera-
ture (e.g. Hildebrand®). In outline
form, the procedure is: (1) Measure
the standing wave pattern in terms of
power, P(x,y), at equal intervals along
a line y=at+bx. (2) Tabulate differences,
F(i), between successive measurements.
This is to eliminate the constant term.
{3) From thig table form a matrix equa-
tion

C*'X=D . (6)
Both C and D matrices are formed from

F(i) tabulation. If the search is made
for six periodicities (n=4) then

Cyy =F(i+j) + F(i+12-}))

Dy =F()+ F(i+ 12)

Matrix eq. (6) is solved for X using the
method of least squares (e. g., Lanczos®)

X =[trn(C)- C] X [trn(C):- D] . (7)

Solutions for X are used to form coef-
ficients for a 6-th degree equation. The
roots of the equation are cosines of the
periodicities projected on the line y=at+bx.

With periodicities solved, another
matrix equation is set up

C-A=B. (8)

Matrix C has thirteen columns, the
firgt is unity, the others are cosine and
sine values for the six periodicities. B
is a vector matrix consisting of meas-
ured values of P(x, y).

Solution for A gives amplitudes and
phases and is obtained similarly to that
for X, using least squares

A =[trn(C)- C] "2 [trn(C)-_B]. (9)

Data measured along one line y=at+bx
gives sufficient information to identify
the amplitudes of the components. How-
ever, measurements along one line are
insufficient to determine the directions-
of-arrival for the components. To get
these it is necessary to make measure-
ments along several intersecting lines.

The procedure is illustrated by a
numerical example in which three com-
ponents are assumed and the standing
wave pattern computed. The computed
values are used as "measured" data and
processed to identify and evaluate the
four compeonents. The fourth component
is found to have negligible amplitude.
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