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1 . INfROIJUCfIClI 

Arrays have been used in many signal acquisition applications [1] such 
as sonar, radar, convnunications and seismology. One of the practical 
problems in array systems design is how to cope with element failure as 
there is a high probability that one or more elements will fail (no 
output) for every array used in the real world. Ramsdale and Howerton 
[2J had shown that element failure produces an elevated sidelobe level 
whose peak value can be estimated and in many cases bounded above by the 
ratio of the sum of the amplitude weights of the faulty elements to the 
sum of the amplitude weights of the functioning elements. Processing 
techniques had been proposed in the Ii terature to regain the sidelobe 
suppression lost due to inoperative elements. Among such techniques are 
algori thms for adjusting the ampli tude weights [3 . 4J. cross-sensor 
beamforming [ 5J. subaperture processing [6J and estimating the signal at 
inoperative elements by using those from neighbouring elements [2J . 

In this paper. a simple and effective algorithm is presented to regain 
sidelobe suppression lost due to element failure with narrowest possible 
beamwidth. The basic idea is to match the array response in the 
presence of faulty elements to a desired response over the mainlobe 
width while minimi zing the mean-square value of the array response over 
the sidelobe regions. This formulation results in a constrained 
optimization problem involVing a quadratic constraint and a set of 
linear constraints on the weights. The paper presents an efficient 
numerical technique to obtain the optimal weights. Numerical resul ts 
are presented to illustrate the effectiveness of the approach. 

2. PROBLEII FOIOOlLATIClI 

Without loss of generality. consider a linear array of N isotropiC 
antenna elements with uniform spacing. The antenna far-field pattern is 

given by G{fo.9) = ~~(fo. 9). where fo is the frequency of interest. 

superscript H denotes complex conjugate t ranspose. and W is the 

T 
N-dimenSional complex weight vector given by ! = [Wi. Wz ....• wNJ . 

and ~(fo .B ) is the N-dimensional steering vector given by ~(fo.B) = 

[exp(j21'1"foTd .. . exp(j21rfOTN)]T. where {Ti , i = 1. 2 •... , N} are the 

propagation delays between the plane wavefront and the antenna elements. 

The mean-square error between the desired response and the response of 
the array system over the mainlobe width is given by 
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(1 ) 

where A(fo .S) Is the desired response, 90 the look direction, AU the 
rrainlobe of interest and Q1 and !: are a N x N dimensional Hermi cian 

matrix and N-dimensional vector respectively. 

The mean-square value of the array response over the side lobe regions is 
given by 

p = 1 
48, d8 + (2) 

where AS I = [~/2 - 8 1 J. and Q2 is a N x N dimensional Hermitian matrix. 

The optimal weight vector in the presence of element fai lure is the 
solution to the following constrained optimization problem: 

minimize (~, ! - :? p - pH W + 1) (3a) 
W 

subject to :?Q2!~f (3b) 

c" W = 0 (3c) 

where f defines the mean-square sidelobe level and C is the N x n 
dimensional matrix given 

[

0100 ••• 
o 0 0 1 ••• 

T C = • . . 
o 0 0 0 ••• 

~ ~ ]1 
1 0 I 

(4) 

The linear constraints given by (3c) force the weights of the 
inoperative elements to zero. The dimension n specifies the number of 
faulty elements. 

3. PROBlBI SVLUflOO 

Using the method of Lagrange Multipliers [7], it can be shown that the 

optimal weight vector! which solves the (3) is given by 

where aD is determined such that 
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(6) 

The computational complexi ty of determining ao can be very much reduced 
by using the matrix factorization method as follows: 

Since Q2 and Q1 are Hermitian matrices. with Q2 positive definite, there 
exists a nonsingular matrix r [8] such that 

Q2 = r rH (7) 

Q, = r A rH (8) 

Substt tuting (7) and (8) into (5) and in turn into (6) and after some 
manipulation. one obtains 

II (A + ~oI)-'{I - r-'c[d1(rH)-' (A + ~oI)-' r-'cr 
d1(rH)-' (A + ~oI)-'} r-' p 112 = f 

A 

(9) 

Any root finding method can be used to solve fOT Ao which satisfies the 
equation defined by (9). It was found that the problem of determining 

ao which satisfies (9) can be made very efficient by using the 
half-interval method followed by Regular Falsi algorithm [ 9 ] as it has 
shown excellent convergence properties. 

Note that in (9), r- 1
• A and ~ can be pre-computed and stored. Hence in 

the presence of element failure, one needs to speficy the matrix C and 

solve for ao. The computation load to solve for ao is very cheap using 
(9) . 

4. NUllERlCAL RESULlS 

To demonstrate the perforrrance achievable with the proposed approach, 
computer studies involVing a linear array of 32 elements have been 
carried out . The inter-element spacing was set at 0.5Ao. 

Figure 1 shows the directional pattern of a conventional beamformer 

using uniform taper weights wi thout (solid line) and wi th 2nd and 9 th 

elements faul ty (dash line). It can be seen that in the presence of 
faulty elements, the sidelobe level increases. 

Figure 2 shows the directional pattern in the presence of elements 
failure after optimization. QI is integrated over the range from _4 0 to 
4- and Q2 is integrated over [-90°, -6-] and [6-, 90° ]. Two values of f 
were used in the design, f = 10- 3 (solid line) and f = 10-& (dash line). 
It can be seen that the optimized patterns achieve low sidelobe with 
marginal increase in t he mainlobe. 
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5 _ aJIICllISIONS 

The paper has presented a simple and effective algori thm to regain 
sidelobe suppression lost due to element failure with narrowest possible 
beamwidth. The problem is formulated as a constrained optimization 
problem involving a quadratic constraint and a set of linear constraints 
on the weigh ts. An efficient nUrDerical technique based on matrix 
factorization has been proposed to solve for the optimal weights. 
Numerical results showed that the proposed technique 1s very useful in 
optimizing the beam pattern in the presence of element failure. 
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