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1. Introduction
Trace lines in printed circuit boards (PCB) are reaching higher and higher density requiring the use of
various trace layouts. Line traces are considered to be a sort of transmission line so that in high density
PCBs, multi-conductor transmission lines are typical. In addition, some of these are occasionally bent
in an arbitrary direction. Coupling phenomenon between traces lines or transmission lines is known as
crosstalk in the field of electromagnetic compatibility (EMC). The problem of crosstalk between neighbor-
ing traces is a serious issue for signal integrity (SI) in high-speed digital circuits. The so-called telegrapher’s
equations that deal with line voltage and current are used to analytically investigate crosstalk. Network
functions, such as chain matrix, impedance matrix, admittance matrix, etc., are derived from solutions to
telegrapher’s equations. To derive multi-conductor transmission lines, these equations are expanded into
a matrix form. In these cases, the lines should be parallel in a section being considered. However, many
parallel bent lines are not equal in length. This presents a difficulty when applying ordinary line equations
to bent lines.

In this paper, our final object is to find a line equation for two bent parallel lines. For our purposes,
we assume the transmission lines are weakly coupled. Therefore, we assume that each line functions
as an isolated line, but that a coupling phenomenon is generated by electromagnetic fields caused by
the proximity of a neighboring line. When external electromagnetic fields arrive at a transmission line,
induced current flows in that line. This phenomenon is expressed in the form of distributed voltage and
current sources along the line. Therefore, telegrapher’s equations having forcing terms, nonhomogeneous
differential equations, are adopted to analyze the phenomenon [1]-[3]. A solution to modified telegrapher’s
equations can be obtained by a state variable technique [3]-[4]. We apply this technique to our topic.
The electromagnetic fields due to a transmission line can be written with vector potentials. Therefore,
we obtain the vector potentials in terms of the line terminal voltages and currents so that the resultant
function is derived in a chain-matrix expression.

2. Line equation for a single bent line
We suppose a lossless transmission line installed at height of z = h in the y direction above a perfectly
conducting ground plane. To make the line model simple, the medium of the line system is in free space.
When the transmission line is excited by external electromagnetic fields, an induced current flows in it.
This phenomenon is referred to as coupling of electromagnetic fields to transmission lines. Corresponding
to the telegrapher’s equations, modified telegrapher’s equations can be derived from Maxwell’s equations
by assuming a propagating wave in the transmission line as a transverse electromagnetic (TEM) mode
[1]-[3]. A solution to the modified telegrapher’s equations for the line of length ` can be as follows,

[
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where [F (y)] is a chain matrix or ABCD matrix of the transmission line. Terms Vf and If represent
effects due to the external fields and correspond to the magnetic field and the electric field contributions,
respectively. By using the vector potential A(Ax, Ay, Az) of the external fields, Vf and If can be written
as below [5],[6].
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We consider two parallel transmission lines with weak coupling of less than −20 dB, for example. Gen-
erally speaking, to obtain a set of solutions to the telegrapher’s equations for the two parallel transmission

PROCEEDINGS OF ISAP2005, SEOUL, KOREA

- 11 -- 11 -

WA1-3

ISBN: 89-86522-77-2   94460    KEES

PROCEEDINGS OF ISAP2005, SEOUL, KOREA



lines from a modal analysis, we should consider two orthogonal or independent modes. For two transmis-
sion lines, the most popular modes are balanced and unbalanced modes in a transmission-line field, odd
and even modes in a microwave-circuit field, or differential and common modes in an EMC field. Thus, the
distinctive property characterizing a transmission-line system, characteristic impedance, should be defined
as one in one of these modes. Here, we consider a weak coupling; this suggests that the characteristic
impedance of each transmission line can be approximated in the same way as that for an isolated line.
Therefore, we can apply the coupling concept for external fields of transmission lines to the coupling be-
tween two parallel transmission lines. For simplicity, let the both lines be of the same height z = h and
same length ` and separated by 2w as shown in Fig. 1 (a).

First, we consider the equation for line ]1. That is, we discuss the second term on the right side of
(1). The vector potential of line ]2 is only the y component by virtue of taking into account the image
component as

Ay =
µ0

4π

{∫ `

0

I2(y′)e−jkr1

r1
dy′ −

∫ `

0

I2(y′)e−jkr′1

r′1
dy′

}
(3)

where I2(y) denotes the current flowing in line ]2 as

I2(y) = −j
V2(0)
Z0

sin βy + I2(0) sin βy = j
V2(`)
Z0

sin β(`− y) + I2(`) cos β(`− y), (4)

and r1 and r′1 are distances from the current concerned at y = y′ to the observing point (x, y, z) as

r1 =
√

(x− w)2 + (y − y′) + (z − h)2, r′1 =
√

(x− w)2 + (y − y′) + (z + h)2. (5)

By applying (3) into (2), we can obtain the second term on the right side of (1). Moreover, taking into
account (4) leads the following equation in a matrix form:
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]
. (6)

A similar procedure can be used for line ]2 so that we can obtain the resultant line equation in a chain
matrix form,
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Note that in many cases considering the terminal mechanical structure, e. g., riser, is preferable. That is,
Az components due to the terminal currents should be taken into account in (2).

Next, we consider a bent line as shown in Fig. 1 (b). In the figure, a part of the transmission line of
length, `1, is depicted in the x-y-z coordinate and another part of length, `2, is in the X-Y -Z coordinate.
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Figure 1: Line models: (a) is for two parallel lines and (b) for a single bent line.
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In addition, the angle between the y and the Y axes is θ. Then, the relation between two coordinate
systems is [

x
y − `1

]
=

[
cos θ sin θ
− sin θ cos θ

] [
X
Y

]
. (8)

Two line sections generate the y and Y components of the vector potentials, respectively, so that the
components affecting each line section are

Ax2 = AY 2 sin θ Ay2 = AY 2 cos θ, and AX1 = −Ay2 sin θ AY 1 = Ay1 cos θ. (9)

For the line section of length `1, the effects due to the line section of length `2 are
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where we can write AY 2 as follows by setting the line voltage and current in the line section of length `2
be V2(·) and I2(·):
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where R12 =
√

X2 + (Y − Y ′)2 + (Z − h)2, and R′12 =
√

X2 + (Y − Y ′)2 + (Z + h)2.
Similar equations for the line section of length `2 hold so that we resultantly obtain the line equation in

a form as [
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]
=
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and [
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=
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]
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From the above equations, considering the continuity relation at the bent point, y = `1 and Y = 0, that
is, V1(`1) = V2(0) and I1(`1) = I2(0), we obtain the line equation in a chain-matrix form for a bent line:

[
V1(0)
I1(0)

]
=

{[
A(`1) B(`1)
C(`1) D(`1)

] [
1− a1b −b1b

−c1b 1− d1b

]−1 [
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]
+

[
a2b b2b
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]}[
V2(`2)
I2(`2)

]
.

(14)

3. Line equation for two bent parallel lines
Now, we consider a bent-parallel-line model as shown in Fig. 2. The distance between two lines is 2w
before and after the bent point, and the bent points are denoted with A and B, respectively, in the figure.
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Figure 2: Model of two bent parallel lines: (a) is for bird’s eye view and (b) for top view.
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Line ]1 is of length `1 from point 2 to point B plus `2 from point B to terminal 4. The angle of two line
directions, axes y and Y , is θ. This model is often seen in PCBs, but to discuss the line equation strictly
from the view of ordinary transmission-line theory is difficult. From a glance at the figure, we notice that
the parallel sections are of the same length but excess line sections of different length exist. These excess
line sections make analyzing such bent lines difficult.

Here, we apply the method for two parallel lines and a single bent line mentioned earlier to our topic.
The two-dimensional coordinates of the bent points are

A

{
xA = −w

yA = `1 + 2w
1− cos θ

sin θ

{
XA = −w

YA = −w
1− cos θ

sin θ

, B





xB = w

yB = `1

{
XB = w

YB = w
1− cos θ

sin θ

.

And for the right sides of the lines,

C(X,Y ) =
(
−w, `2 + w

1− cos θ

sin θ

)
, D(X, Y ) =

(
w, `2 + w

1− cos θ

sin θ

)
.

Considering the vector potentials due to the currents in the four sections, we can derive the following
equations in a general form:
[

V1
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]
=
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]
+
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]
+
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]
+

[
a14 b14

c14 d14

] [
V4

I4

]
(15)
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]
=
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]
+
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+
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]
+
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]
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[
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]
=
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]
+
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]
+
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]
+
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]

(17)[
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]
=

[
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]
+

[
a41 b41
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] [
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]
+

[
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]
+

[
a43 b43
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]

(18)
A chain matrix expression for terminals 1, 2, 3, and 4 can be obtained by combining the equations above.

4. Conclusion
We derived a line equation expressed in a chain matrix for parallel bent lines by applying the concept of
the coupling of external fields to transmission lines. The equations derived here are for weak coupling.
In future, we need to check the effectiveness of the equation through experiment, and extend it to PCB
traces.
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