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Abstract

This paper derives the modal fields propagating in a dielec-
tric parallel plate waveguide with rough walls. An equiv-
alent surface-impedance boundary condition is applied
at two uniform planes near the rough walls. These two
planes form the parallel plate waveguide. The roughness of
the interfaces is accommodated by making the equivalent
surface impedance a random function of position on
the wall. The roughness is only considered along the
propagation direction. The scalar potential functions from
which the field components are derived satisfy an infinite
set of stochastic integral equations, approximate solutions
to which are obtained by iteration. It is found that (1) the
“TE” and “TM” modes possess the similar propagation
characteristics as propagating in the free space; (2) the
power density carried by the incoherent part of the field
depends on the operating frequency, the positions in the
waveguide cross section, and roughness. Representative
numerical results are presented to illustrate the analysis.

1. Introduction

Problems of wireless communications in urban canyons
are of great interest from both theoretical and practical
points of view. A first step in addressing such problems is
to develop a characterization of the propagation channel,
including the roughness of the buildings. In this paper we
consider a representative problem, i.e. a dielectric rough
wall parallel plate waveguide. We are going to examine
the modal fields propagating in such environments.
We assume the parallel plate waveguide is uniform. Two

planes near the rough wall buildings form the waveguide,
as shown in Figure 1. For simplicity, we only consider the
roughness along the propagation direction, i.e. y direction.
We obviate the need to consider the electromagnetic fields
in the exterior through the use of an equivalent surface-
impedance boundary condition that is defined at two
waveguide walls. The roughness e ects of the building
walls are accommodated by making the equivalent surface
impedance a random function.
Following the procedure developed by Casey for a

circular tunnel [1], we begin by presenting an expression
for the equivalent surface impedance Zs(y) in terms of
the signal frequency, the relative permittivity of the
medium, and the roughness of the building wall. As
shown in Figure 1, we assume that the building walls
are located at x = (y) and x = a + (y) in which
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Fig. 1: Geometry and coordinate system for dielectric rough wall
parallel plate waveguide

(y) is a nonnegative homogeneous random function with
prescribed (constant) mean = E( ) and autocovariance
C (y y ) = E{ (y) (y ) 2}. We also assume no
variation in z direction, / z 0.

We assume the time dependence exp(j t) for all field
quantities. The equivalent surface impedance at the ref-
erence planes is expressed in terms of (y) by

Zs(y) =
Z0

r
+ jk0Z0 1

1

r
(y) (1)

in which k0 and Z0 denote respectively the wavenumber
and the intrinsic impedance of free space and r is the
(generally complex) relative permittivity of the buildings.
It is assumed that the phase change k0 associated with
the distance between the reference planes and the local
building walls is small compared to unity, and that the
magnitude of the relative permittivity r is large compared
to unity.

The function (y) is described by the Fourier-Stieltjes
representation

(y) = +
1

2
e jkyyd (ky) (2)

in which

E{d (ky)} = 0 (3)

E{d (ky)d (ky)} = 2 (ky ky)dkydkyS(ky). (4)
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The power spectral density function S(ky) is related to
the autocovariance C (y y ) by

C ( ) =
1

2
S(ky)e

jky d (5)

whence, by inverting the Fourier integral, we obtain

S(ky) = C (y)ejkyydy. (6)

The equivalent surface impedance, normalized by the
intrinsic impedance of free space, is therefore described
by the Fourier-Stieltjes representation

s(y) =
Zs(y)

Z0
= s + jk0 1

1

r

1

2
e jkyyd (ky)

(7)
in which

s = E{ s(y)} = 1

r
+ jk0 1

1

r
. (8)

2. Field Components and Boundary Conditions

The electromagnetic field within the waveguide is obtained
from two scalar functions and that satisfiy the
Helmholtz equation

2 + k20 = 0. (9)

The electric and magnetic fields are given in terms of
and by

E =
Z0
jk0

× × ax × ax, (10)

H = × ax +
1

jk0Z0
× × ax. (11)

Here we use both TE and TM respect to x. We represent
the scalar functions (which generates the TM field com-
ponents) and (which generates the TE field components)
as

Z0 (x, y)
(x, y)

=
1

2

A(ky) B(ky)
C(ky) D(ky)

× sin kxx
cos kxx

e jkyydky, (12)

where kx = k20 k2y, and the functions A(ky), B(ky),

C(ky), and D(ky) are to be determined from the bound-
ary conditions at the waveguide walls. The equivalent
impedance boundary conditions are defined as Et × Ht
toward the boundary. These conditions are

Ey(0, y) = Z0 s(y)Hz(0, y)
Ey(a, y) = Z0 s(y)Hz(a, y)
Ez(0, y) = Z0 s(y)Hy(0, y)
Ey(a, y) = Z0 s(y)Hy(a, y)

(13)

Substitution of the appropriate expressions obtained from
equations (7), (10), and (11) yields an infinite set of
coupled homogeneous stochastic integral equations for the
functions A(ky), B(ky), C(ky), and D(ky). We define the

column vector A(ky) whose elements are A(ky), B(ky),
C(ky), and D(ky) and the matrices (ky) and (ky) as
follows:

(ky) =

11(ky) 12(ky) 0 0

21(ky) 22(ky) 0 0
0 0 33(ky) 34(ky)
0 0 43(ky) 44(ky)

,

(14)
and

(ky) =

0 12(ky) 0 0

21(ky) 22(ky) 0 0
0 0 33(ky) 0
0 0 43(ky) 44(ky)

,

(15)
in which

11(ky) =
kxky
k0

12(ky) = j sky

21(ky) =
kxky
k0

cos kxa+ j sky sin kxa

22(ky) = j sky cos kxa
kxky
k0

sin kxa

33(ky) = j s
kxky
k0

34(ky) = ky

43(ky) = ky sin kxa j s
kxky
k0

cos kxa

44(ky) = ky cos kxa+ j s
kxky
k0

sin kxa

12(ky) = k0ky
21(ky) = k0ky sin kxa

22(ky) = k0ky cos kxa

33(ky) = kxky
43(ky) = kxky cos kxa

44(ky) = kxky sin kxa

. (16)

Then the vector A(ky) satisfies the coupled homogeneous
stochastic integral equations

(ky) ·A(ky) =
1

1

r

1

2
(ky ky) ·A(ky ky)d (ky)

(17)

for ky .

3. Approximate Solution of the Coupled Equations

We develop an approximate solution to the coupled
integral equations by iteration. We write

A(ky) = A
(0)(ky) +A

(1)(ky) + · · · (18)

The iteration scheme is

(ky) ·A(k)(ky) =
1

1

r

1

2
(ky ky) ·A(k 1)(ky ky)d (ky)

(19)

for k 1. The iteration is initialized using the condition

(ky) ·A(0)(ky) = 0. (20)
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In this work we consider the propagation of individual
modes in the waveguide. The initialization of the iteration
scheme is therefore selected so as to yield individual
modes in the limit as the waveguide walls become smooth,
that is, as the surface impedance becomes constant. The
vanishing of the determinant of the matrix (ky) yields
the dispersion relation

k4y
k2x
k20
+

2

s sin kxa 2j
kx
k0
cos kxa ×

2j s

kx
k0
cos kxa

2

s

k2x
k20
+ 1 sin kxa = 0. (21)

We denote the roots of this dispersion relation by kyl for
l = 0,1,2,.... We initialize the iteration at a specific root
of the dispersion relation for ky = kyl

A(0) = 2 Al (ky kyl) (22)

in which Al is a constant vector whose components are
related to each other by the condition

(kyl) ·Al = 0. (23)

The initialization condition (22) satisfies equation (20)
for all ky = kyl by the virtue of the delta-function in the
definition of A(0)(ky); and it satisfies this equation for
ky = kyl because the dispersion relation is satisfied there.

The first iteration yields

A(1)(ky) = 1
1

r

1(ky) · (kyl) ·

Al (ky ky kyl)d (ky). (24)

Let

Q(z) =
sin z cos z 0 0
0 0 sin z cos z

, (25)

we thus obtain the following first-order expression for the
lth order scalar functions l and l:

Z0 l(x, y)

l(x, y)
= Q k20 k2ylx ·Ale jkyly

+ 1
1

r

1

2
Q k20 (ky + kyl)

2x ·
1(ky + kyl) · (kyl) ·Ale j(ky+kyl)yd (ky).

(26)

This completes the first-order approximate solution for the
functions from which the electromagnetic field components
are derived. These functions each comprise a deterministic
or coherent part and a zero-mean random or incoherent
part; and so therefore will also the field components
derived from them.
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Fig. 2: Normalized propagation constant vs. frequency

4. Numerical Results

Representative numerical results of dispersion relation are
shown in Figure 2. The relative permittivity of the building
facades is given by [2]

r = r + 0Z0/(jk0)
2

, (27)

in which r is the high-frequency relative permittivity
and 0 is the low-frequency conductivity. We show the
real and imaginary parts of the normalized complex prop-
agation constant ky/k0 as functions of frequency for two
lowest order modes in a parallel plate waveguide of width
a = 10 meters. The average roughness is equal to 0.01a;
and r = 3.0 and 0 = 0.001S/m. The real parts of the
propagation constant are positive and the imaginary parts
are negative. The cuto frequencies are approximately 18
MHz for “TE1” mode and approximately 28 MHz for
“TM1” mode.

The power density Sy(x, y) in the propagation direction
is given in general by

Sy(x, y) =
1

2
[Ez(x, y)Hx(x, y) Ex(x, y)Hz (x, y)], (28)

where (F ) denotes the real part of F .

The expected value of the power density in propagation
direction for a given mode is the sum of the coherent and
incoherent power densities. The coherent part is given by

Syc(x, y) =
|kyl|2 (kyl)

2k0Z0
[|Al sin kxlx+Bl cos kxlx|2

+ |Cl sin kxlx+Dl cos kxlx|2]e2 (kyl)y, (29)

where (F ) denotes the imaginary part of F , k2xl =
k20 k2yl. The incoherent power density for lth mode in
propagation direction is

Syi(x, y) = 1
1

r

2
e2 (kyl)y

4 k0Z0
S(ky) [(ky + kyl)

(ky + kyl)
2]e2 (ky)y{ [S1(x, y, ky)S1(x , y , ky)] +

+ [S2(x, y, ky)S2(x , y , ky)]}dky, (30)
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Fig. 3: Normalized coherent and incoherent power density in prop-
agation direction vs. x/a: a = 10 meters, = 0.01a, f = 100MHz,
“TE1” mode.
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Fig. 4: Normalized coherent and incoherent power density in prop-
agation direction vs. x/a: a = 10 meters, = 0.01a, f = 450MHz,
“TE1” mode.

where

S1(x, y, ky) = A
(1)
l (ky) sin kxl+x+B

(1)
l (ky) cos kxl+x

S2(x, y, ky) = C
(1)
l (ky) sin kxl+x+D

(1)
l (ky) cos kxl+x

(31)
k2xl+ = k20 (ky + kyl)

2, and denotes the complex
conjugate. We assume herein that the autocorrelation
function C is a zero mean Gaussian for the building
wall roughness

C (y) = 2e
y2

d2 (32)

where and d are the standard deviation and correlation
length of the roughness, respectively. The associated power
spectral density [3, page 205] is also Gaussian

S(ky) =
2 de

kyd

2

2

. (33)

We show two examples in Figure 3 and Figure 4, in
which we plot the coherent and incoherent power densities
in propagation direction for the first “TE” mode at any y
position in the waveguide, normalized to their maximum
values , vs. normalized position, x/a. The parameters we
used are: a = 10 meters, = 0.01a, d = 0.3a, r = 3,

0 = 0.001S/m, frequencies are 100 MHz and 450 MHz,
respectively.

From these two figures, we noted that the incoherent
power density is small compared to the coherent power
density. We also noted that the incoherent power density is
confined to the regions near the walls, which was observed
in [1]. We discover that the incoherent power density is
the function of the frequency, roughness, and position in
waveguide cross section.

5. Conclusion

We have formulated the problem of electromagnetic wave
propagation in a dielectric rough wall parallel waveguide,
using an equivalent surface-impedance boundary condi-
tion. Using an iterative technique, we have obtained
an approximate solution to the coupled homogeneous
stochastic integral equations that describe the propaga-
tion. Under an appropriate initialization, our approximate
solution represents single leaky waveguide modes. We have
shown that the incoherent power density is varying with
frequency, roughness and positions.
We can now develop the covariance functions of the

electromagnetic field in the dielectric rough wall parallel
plate waveguide. Arguments based on the central limit
theorem can be used to show that the field is Gaussian; the
covariance functions will therefore complete the descrip-
tion of the probabilistic character of the field of which
the wireless communications community will be greatly
benefited [4] [5].
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