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Abstract—Bidirectional associative memories have
been proposed by Kosko[1]. Kosko’s model consists of two
layers of neurons with synaptic connections between the
layers. In the original model, the synaptic weight connec-
tions are determined by a correlation matrix of stored pat-
terns. However, when the training pattern vectors are not
orthogonal, cross-talk noise may occur in the system. To
solve such problem, Oh.et.al. have been proposed Pseudo-
relaxation learning algorithm for BAM (PRLAB) which
uses a projection method[2]. PRLAB does not require or-
thogonality or any special encoding of the training pairs
and extremely increase the storage capacity. We extend
the real-valued PRLAB algorithm to complex value. In the
case that the complex-valued BAM trained by the extended
PRLAB, we show that the storage capacity increases as the
same as in the real-valued PRLAB. Moreover, it is also
shown that when the complex-valued BAM fails to store
the patterns to have high storage capacity, the time series
of directional cosine during the training show non-periodic
oscillation. We analyze the non-periodic oscillation in the
present paper. As a result the non-periodic oscillation has
a low-dimensional structure.

1. Introduction

Associative memory models which use neural networks
have been studied since Hopfield’s associative memory
model was invented[3]. It is widely known that synaptic
connection weights of the Hopfield model are determined
by a correlation matrix of the stored patterns. Another pop-
ular associative memory is a bidirectional associative mem-
ory (BAM) which was proposed by Kosko[1]. The BAM
consists of two layers of neurons with symmetric synaptic
connections between the layers. The BAM behaves as a
hetero-associative memory which enables to store and re-
call pairs of patterns. When a noisy pattern is presented to
the BAM, the recalling process of the BAM can correctly
reconstruct the pattern through a sequence of successive
updates until it reaches to a steady state. The feedback
mechanism of the BAM helps to filter the noise as succes-
sive updates of the network.

However, because the BAM uses correlation learning, as
many associative models do, the memory capacity is poor.
To solve such a problem, Oh.et.al. have been proposed
Pseudo-relaxation learning algorithm for BAM(PRLAB)

which uses a projection method. PRLAB does not require
orthogonality or any other special encoding of the training
patterns and it shows a lager storage capacity than that of
the correlation learning. A learning of synaptic weights can
be represented by a relaxation method for solving a system
of linear inequalities. If training pairs are not contradic-
tion, it is guaranteed that the network recalls all the training
pairs. Hattori.et.al.[4] proposed QLBAM which combines
Hebbian learning with PRLAB. It was shown that memory
capacity is greatly improved.

In recent years, complex-valued neural network mod-
els have been proposed and applied to associative memory
models and it is shown that such networks show different
features from the real-valued networks. A complex-valued
auto-associative network stores patterns that are presented
in complex-valued region. In contrast to a real-valued
neuron which usually stores patterns with two states. A
complex-valued neuron easily stores various states as the
phase of the complex value. Therefore, it can be applied to
store natural scene pictures. However, it has been reported
that the more states a neuron takes, the less memory capac-
ity the associative network consists of the neuron shows.

Therefore, an improvement of the storage capacity is an
important problem of complex-valued associative memory
model. In this paper, we extend the real-valued PRLAB
algorithm to complex value. Moreover, it is also shown
that when the complex-valued BAM fails to store patterns
to have high storage capacity, the time series of directional
cosine during the training show non-periodic oscillation.

2. Complex-valued Neural Networks

In this section, we describe complex-valued neural net-
works. There are two kinds for complex-valued neuron
models. One is a continuous-state model and the other is a
discrete-state model. A discrete-state neuron is allowed to
take one of the equally partitioned phases on the unit circle
of the complex plane. The operation of a complex-valued
neuron is represented as Eq.(1) - (3). Let Wi j denotes the
complex-valued connection weight associated to the cou-
pling from the j-th neuron to the i-th one. Let θi be the
threshold for the i-th neuron. Eq.(1) shows the updating of
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the internal state of a single neuron.

S i(t + 1) =
N∑

j=1

Wi jX j − θi (1)

The discrete-state models’ output is represented by

xi(t + 1) = exp
(
i
2πl
k

)
, (2)

i f
2π(2l − 1)

k
< arg(si(t + 1)) <

2π(2l + 1)
k

where l=0, 1, · · ·, K-1, and K denotes the resolution of
the the complex-valued neuron. Therefore, the neuron has
K states for its output. Eq.(2) implies that the absolute
value of every state of the neuron is unity. The discrete-
state model takes the nearest phase among Eq.(2) on the
unit circle of the complex plane as its output.

The continuous-state models’ output is represented by

xi(t + 1) = exp (i arg(si(t + 1))) . (3)

A continuous-state neuron model takes eiθ when the inter-
nal state of the neuron is reiθ (r > 0 and 0 < θ < 2π ).

Therefore, the output of both continuous-state and
discrete-state model is on the unit circle of complex plane
and its absolute value is unity. However, it has been re-
ported that the more resolution factor K a neuron takes,
the less memory capacity the network shows. For exam-
ple, when the resolution factor K=4, the storage capacity of
a complex-valued Hopfield model is 0.07, when, K=8 the
storage capacity is only 0.025 [5]. These examples show
that the storage capacity of the complex-valued Hopfield
model is smaller than that of the real-valued one with a
conventional learning rule like the Hebbian learning.
3. PRLAB

In this section, we describe pseudo-relaxation learning
for BAM(PRLAB)[2]. At first, we consider an N-M BAM
which means N neurons in the first layer and M neurons in
the second layer. Let Wi j be the connection weight between
the i-th neuron in the first layer and the j-th neuron in the
second layer. Let θxi and θy j be the threshold for the i-th
neuron in the first layer and the one for the j-th neuron in the
second layer, respectively. Let V = {(X(p), Y(p))}p=1,···,P be a
set of pairs of training patterns. Suppose that each training
vector consists of elements that are X(p) ∈ {−1, 1}N and
Y(p) ∈ {−1, 1}M . The vector V is guaranteed to be recalled
if the following system of linear inequalities are satisfied
for all p = 1, · · · , P n∑

p=1

Wi jX
(p)
i
− θY j

 Y(p)
j
> 0, (4)

for j=1,…,M , n∑
p=1

Wi jY
(p)
j
− θxi

 X(p)
i
> 0, (5)

for i=1,…,N .
In PRLAB each training pair of patterns {X(p), Y(p)} is

presented sequentially, then the weights and thresholds are
updated if Eq.(4) and (5) are not satisfied. The updating is
executed by the following updating rules. For the neurons
in the first layer

if S(p)
X j

X(p)
j
≤ 0

∆Wi j = −
λ

1 + M

(
S(p)

Xi
− ξX(p)

i

)
Y(p)

j
, (6)

∆θXi =
λ

1 + M

(
S(p)

Xi
− ξX(p)

i

)
(7)

where

S(p)
Xi
=

M∑
j=1

Wi jY
(p)
j
− θXi . (8)

For the neurons in the second layer,
if S(p)

Y j
Y(p)

j
≤ 0

∆Wi j = −
λ

1 + N

(
S(p)

Y j
− ξY(p)

j

)
X(p)

i
, (9)

∆θY j =
λ

1 + N

(
S(p)

Y j
− ξY(p)

j

)
(10)

where

S(p)
Y j
=

N∑
i=1

Wi jX
(p)
i
− θYi . (11)

The above updating is repeated until the synaptic weights
converge. It is shown that the updating converges if the
relaxation coefficient λ is in between 0 and 2 [6].

4. Complex-valued PRLAB

In Sec.3, we described the condition for the recalling of
all the training pairs with real-valued PRLAB. This con-
dition represents that the signs of the internal state of the
neuron and the desired output are the same. We consider to
extend real-valued PRLAB to complex-value. We assume
that the recalling condition for complex-valued BAM is as
follows:

In every neuron, the real part of the product of the output
and conjugate of the desired output becomes unity and the
complex part of it is naught.

By considering the recalling condition for a complex-
valued BAM, the condition for updating the weights is as
follows. Considering the first layer, product of the output
and the desired output take the value on the unit circle in the
complex plane, this formula means that we can not extend
the recalling condition of Eq.(4) and (5) to the complex-
valued BAM as they are. Instead, we consider the prod-
uct of the output and the conjugate of the desired output.
Therefore, we introduce a condition that the real part of
the product of the output and the conjugate of the desired
output is close enough to unity and the imaginary part of
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it should be close enough to naught, as represented by the
following formulas. For the neurons in the first layer

1 − Re


 n∑

p=1

Wi jX
(p)
i
− θy j

 Y(p)
j

 < ε, (12)

for j=1,…, M.

Im


 n∑

p=1

Wi jX
(p)
i
− θy j

 Y(p)
j

 < ε, (13)

for j=1,…, M.
For the neurons in the second layer

1 − Re


 n∑

p=1

Wi jY
(p)
j
− θxi

 X(p)
i

 < ε, (14)

for j=1,…,N.

Im


 n∑

p=1

Wi jY
(p)
j
− θx j

 X(p)
i

 < ε (15)

for j=1,…,N.
In Eq.(12)-(15) ε should be a small value, for example

ε=0.05.
Then, the weights and the thresholds are updated if the

conditions of Eq.(12)-(15) are not satisfied, the updating in
the first layer of the weights and the threshold is executed
by the following equations.

Re(∆Wi j) =
λ

1 + M
X(p)

i

(
(1 + ξ) − X

(p)
i S(p)

Xi

)
Y(p)

j
, (16)

Re(∆θXi ) =
λ

1 + M
X(p)

i

(
(1 + ξ) − X

(p)
i S(p)

Xi

)
(17)

where

S(p)
Xi
=

M∑
j=1

Wi jY
(p)
j
− θXi (18)

Im(∆Wi j) = −
λ

1 + M

(
S(p)

Xi
− ξX(p)

i

)
Y(p)

j
, (19)

Im(∆θXi ) = −
λ

1 + M

(
S(p)

Xi
− ξX(p)

i

)
(20)

where the real part and imaginary part of a complex number
z are denoted by Re(z) and Im(z), respectively. Cojugate
of z is denoted by z . The updating in the second layer of
the weights and the threshold is executed by the following
equations.

Re(∆Wi j) =
λ

1 + N
Y(p)

j

(
(1 + ξ) − Y

(p)
j S(p)

Y j

)
X(p)

i
, (21)

Re(∆θY j ) =
λ

1 + N
Y(p)

j

(
(1 + ξ) − Y

(p)
j S(p)

Y j

)
, (22)

Im(∆Wi j) = −
λ

1 + N

(
S(p)

Y j
− ξY(p)

j

)
X(p)

i
, (23)

Im(∆θY j ) = −
λ

1 + N

(
S(p)

Y j
− ξY(p)

j

)
(24)

where

S(p)
Y j
=

N∑
i=1

Wi jX
(p)
i
− θYi (25)

5. Numerical Experiment and Result

In this section, we apply complex-valued PRLAB to a
BAM. We observe characteristics of the training when the
complex-valued BAM fails to store patterns. In the follow-
ing numerical experiments, we use conditions as follows:
the resolution factor K= 4, the number of the neurons in
both layers is 5 (5-5 BAM). ξ = 0.1, the number of training
patterns is 4. The training patterns are randomly generated.
With these conditions, when the directional cosine between
the output of a layer and the one of the stored pattern is
unity we consider that the pattern is recalled.

Figure 1 shows a bifurcation diagram of the directional
cosine of the network during the training by the complex-
valued PRLAB with changing the relaxation factor λ as the
bifurcation parameter in between 0 to 2. The bifurcation di-
agram of Fig.1 is obtained during the training step of 30000
to 31000.

Figure 2 shows the same bifurcation diagram as Fig.1
except that the bifurcation parameter λ are changed from
1.94 to 2.01. From Fig.2, we find that period doubling bi-
furcations are occurred by changing the relaxation factor
λ.

We reconstruct an attractor from the time series of direc-
tional cosine of the network during the fails of the training
of storing patterns by plotting the data in a delay coordi-
nate of three dimensions. The following figure is obtained
by the conditions as follows: the resolution factor K=3, the
number of the neurons in both layers is 5 (5-5 BAM). ξ =
0.1254, λ = 1.8, the number of the training patterns is 4.

Figure 3, shows the reconstructed attractor of the direc-
tional cosine with time delay parameter τ=100. Figure 3 is
obtained by plotting the data during of training step 30000
to 600000.

6. Conclusion and Discussion

We consider complex-valued BAM whose input, output,
and weights, and threshold are complex numbers. We ex-
tend the real-valued PRLAB algorithm to complex value.
Moreover, it is shown that when the complex-valued BAM
fails to store the patterns to have high storage capacity.
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Figure 1: Bifurcation diagram of the directional cosine by
changing the relaxation factor λ ( 0 < λ < 2).
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Figure 2: Enlarged bifurcation diagram of Fig1.
( 1.94 < λ < 2.01).

When we vary relaxation factor λ for the training with
the complex-valued PRLAB, directional cosine show pe-
riod doubling bifurcation. Next, we reconstruct an attractor
of the time series of the directional cosine of the network.
The reconstructed attractor shows that the training dynam-
ics have a certain low-dimensional structure.

It has been reported that when acomplex-valued associa-
tive memory model fails to recall memorized patterns. It
shows non-periodic oscillation[8]. The result shown in the
present paper differs from the one in Ref.[8], because the
present result is for a failure during the training. It is a
future problem to see the relation between these results.
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