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Abstract—This paper studies a chaotic spiking oscilla-
tor consisting of two capacitors, two signum shape voltage-
controlled current sources and one impulsive switch. The
vector field of circuit equation is piecewise constant and
trajectory is piecewise linear. The circuit exhibits a variety
of spike-trains. We study interesting bifurcation of inter-
spike-intervals.

1. Introduction

This paper studies a simple chaotic spiking oscillator
(ab. CSO) with piecewise constant ( PWC ) characteris-
tics [1]. The CSO consists of two capacitors, two signum
shape voltage-controlled current sources ( VCCSs ) and an
impulsive switch. If a capacitor voltage reaches threshold
level, the switch resets the voltage to the base level instanta-
neously and the CSO outputs a spike. The circuit equation
and vector field are PWC and the trajectory is piecewise
linear ( PWL ). Using the embedded 1-D map, the dynam-
ics can be analyzed theoretically [1].
First we explain the dynamics of the PWC-CSO.

When the switch does not present, the trajectory draws
rectangular-spiral divergently in the phase plane. Apply-
ing the switching, the PWC-CSO generates chaos. Next
we investigate inter-spike-intervals ( ISIs ) characteristics
that are given precisely because of the PWL trajectory. The
PWC-CSO exhibits various chaotic spike-trains and inter-
esting bifurcation. ISI distribution becomes wide-band as
the base level approaches zero. Increasing the base level
from zero, the ISI bifurcation has window like structure. In
the window, the ISI distribution has narrow-band.
In general, the CSOs have a simple impulse switching

that can cause interesting phenomena, e.g., bifurcations,
hyperchaos, synchronization and a variety of spike-trains
[2]-[4]. The operation of the switch relates to integrate-
and-fire dynamics in artificial neuron models. Using the
CSOs, we can consider pulse-coupled neural networks (
PCNNs ) having applications to the image segmentation
[4], [5]. Also, analysis of spike-trains may contribute
to classification of nonlinear phenomena and application
to spike-train communications and A/D converters [6]-[8].
Analysis of ISI is important for fundamental and practical
viewpoints. It should be noted that [1] firstly presents the
PWC-CSO, however, [1] has not been discussed ISI char-
acteristics.
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Figure 1: PWC chaotic spiking oscillator.

2. The piecewise constant circuit model

Figure 1 shows the PWC chaotic spiking oscillator con-
sisting of two capacitors, two VCCSs and the switch S
where r1 and r2 denote parasitic resistors. Two VCCSs
have signum characteristics:
{
i1= I1sgn(v1),
i2= I2sgn(v1 − v2), sgn(v)=

{
1 for v ≥ 0,
−1 for v < 0. (1)

First, we consider dynamics in the case where the S is
open all the time. For simplicity, we assume that r1 and
r2 are large enough and open them. In this case the circuit
dynamics is described by Equation (2):




C1
dv1
dt
= I2sgn(v1 − v2),

C2
dv2
dt
= I1sgn(v1),

for S = off. (2)

where the following conditions are assumed:

I1 > 0, I2 > 0, C1I1 > C2I2 > 0. (3)

This equation defines PWC vector fields divided by two
border lines v1 = 0 and v1 = v2.
We then define operation of the S as shown in Fig. 2 (a)

: if v1 reaches the threshold voltage VT > 0 then S is closed
and v1 is reset to the base voltage E < VT and the circuit
outputs a spike z:

(v1(t+), v2(t+)) = (E, v2(t)) if v1(t) = VT .

z(t) =




1, for v1(t+) = VT ,

0, otherwise .

(4)

For simplicity, we assume that reset of v1 is instanta-
neous without delay and continuity property of v2 is held.
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Figure 2: Basic circuit dynamics. (a) Time-domain wave-
form, (b) Phase plane.

Fig. 2 (b) shows a trajectory in the phase space. Roughly
speaking, the instantaneous switching by SW and ampli-
tude increasing by the VCCSs correspond to folding and
stretching mechanism to generate chaos, respectively.
In order to analyze the chaotic attractor we normalize the

circuit equation. Using the following dimensionless vari-
ables and parameters:

τ =
I2t

C1VT
, x =

v1
VT
, y =

v2
aVT
, a =

C1I1
C2I2
, q =

E
VT
.

Eqs. (2) and (4) are transformed into Eq. (5):



dx
dτ
= sgn(x − ay),

dy
dτ
= sgn(x),

for S = off.

(x(τ+), y(τ+)) = (q, y(τ)) if x(τ) = 1.

z(τ) =




1, for x(τ+) = 1,

0, otherwise .

(5)

It should be noted that this normalized equation is char-
acterized by two parameters a and q. Following Condition
(3) and E < VT , the parameters satisfy

a > 1, q < 1. (6)

Fig. 3 shows typical chaotic attractors. Roughly speak-
ing, as q increases from negative to zero, size of chaotic
attractor grows ( (a) and (b) ). As q increases from 0, the
switching between q and 1 becomes frequent ( (c) and (d)
).
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Figure 3: Typical chaotic attractors for a = 5. ( the border
y = a−1x corresponds to v1 = v2 ). (a) Chaotic attractor
for q = −0.7, (b) Chaotic attractor for q = 0, (c) Chaotic
attractor for q = 0.4, (d) Chaotic attractor for q = 0.7.

3. ISI characteristics

As q varies, the circuit exhibits interesting bifurcation
phenomena of ISI. In order to analyze the phenomena we
define switching time τn as shown in Fig. 4. Let us consider
a trajectory started from some point at τ = 0. Let τ1 denote
the first firing time when the trajectory firstly reaches the
threshold and is reset to q. Let τn denote the n-th firing
time. The n-th ISI is defined by ∆τn = τn+1 − τn.
Fig. 5 shows histograms of the ISIs corresponding to

typical chaotic attractors in Fig. 3. For q < 0 we have
observed ISI distribution having narrow band as shown in
Fig. 5 (a). As q increases, the distribution changes to have
wide band as shown in Fig. 5 (b). For q > 0, the trajectory
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Figure 4: ISI definition
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Figure 5: Histograms of ISI for a = 5. (a) q = −0.7, (b)
q = 0, (c) q = 0.4, (d) q = 0.7.

can switch between q and 1 without rotation around the
origin. It causes ISI of 1 − q that appears in histogram in
Fig. 5 (c). As q approaches 1, the ISI of 1 − q becomes
dominant as shown in Fig. 5 (d). Fig. 6 shows bifurcation
of ISI (∆τn) for parameter q. As q approaches zero, the ISIs
tend to be long and the distribution becomes to have wide
band.
We can see that the ISI bifurcation diagram exhibits step-

wise shape. This is because the maximum swing number
between two-successive switching changes depending on
q.
Fig. 7 shows attractors and histograms in windows in

Fig. 6 ((a) and (b)). There are many windows in bifur-
cation diagram for q > 0. In the window, the system ex-
hibits narrow chaotic attractors having ISIs concentrated in
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Figure 6: Bifurcation phenomena for a = 5.
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Figure 7: Attractors and histograms in windows for a = 5.
(a) and (a’) q = 0.49, (b) and (b’) q = 0.65.

narrow-band(s) as shown in Fig. 7. Behavior of attractors
in windows are chaotic, but it’s ISI characteristics is very
locally.

4. Conclusions

We have presented the PWC-CSO and have analyzed its
chaotic spike-trains. Since the vector field is PWC, the
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trajectory is PWL and precise analysis is possible. We
have investigated ISI characteristics and bifurcation phe-
nomena: the system exhibits various chaotic spike-trains
that cause interesting window-like structure in the bifurca-
tion diagram. Future problems include theoretical analysis
of ISI bifurcations and engineering applications.
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