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Abstract— Tamaševičius et. al proposed a very simple chaotic
oscillator. Some experimental results, origin of the mathematical
model, and numerical simulations are reported. However, bifur-
cation analysis has not been investigated in details. In this paper,
we compute bifurcation sets of this model by using bifurcation
theory and discuss its dynamical properties. The bifurcation
structures are identified in various parameter planes. Moreover
we investigate chaos synchronization in its coupled system.
Synchronization of periodic and chaotic states are depicted in the
bifurcation diagram, and it is clarified that the period-doubling
bifurcation is deeply related to desynchronization.

I. INTRODUCTION

Tamaševičius et. al proposed a very simple chaotic oscil-
lator. Some experimental results, origin of the mathematical
model, and numerical simulations are reported. However,
bifurcation analysis has not been investigated in details. In
this paper, first of all, we compute bifurcation sets observed
in this model by using bifurcation theory, understand param-
eter dependency, and clarify bifurcation structure. Next, we
investigate chaos synchronization of its coupled system. The
chaos synchronous region is concretely delimited. Finally, we
confirm the phenomenon by implementing the circuit.

II. BIFURCATIONS IN SINGLE CIRCUIT
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Fig. 1. Circuit model

Figure 1 shows a simple circuit proposed by Tamaševičius
[1]. The normalized equation set is as follows:

ẋ = y
ẏ = ay − x − z

εż = b + y − c(exp z − 1)
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Fig. 2. Bifurcation diagram in the a-b plane
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Fig. 3. Phase portraits with b = 11.4. (a) a = 0.19. (b) a = 0.45. (c)
a = 0.8. (d) a = 0.35.
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A. Bifurcation phenomena in the a-b plane

Figure 2 shows a bifurcation diagram of the system in
the a-b parameters plane. a corresponds to R, R1, R2 and
b corresponds to R0. The parameter values c = 4× 10−9 and
ε = 0.13 illustrated in Ref. [1] are related to the capacitors
and the diode. We fix them as constants in this paper. We
set the Poincaré section at y = 0. By altering four resistors,
we can scan and confirm all phenomena in this diagram, both
theoretically and numerically.

As for our notation, a Hopf bifurcation curve for an equilib-
rium is labeled h. Symbols I and G refer to period-doubling
(PD), and tangent (T) bifurcations of periodic solutions, re-
spectively. Superscripts of these symbols show degrees of
periodicity. The parameter plane is split into oscillatory and
non-oscillatory regions by the Hopf bifurcation curve. Figure
3(a) shows a limit cycle in the x-y plane. In Fig. 2, there
exists an island surrounded by PD bifurcation curves. Inside
this, since there exist PD cascades (Fig. 2(A), (B)), chaotic
states are easily observed (Fig. 3(b), (c)). In the chaotic region,
there exist period locking areas delimited by the T bifurcation
curves (Fig. 3(d)). Inside this area, we observe an I 3·2k PD
cascade. From this bifurcation structure, and observation of
chaotic attractors, this system can be classified as of Rössler
type. For b > 15, bifurcation structure is not sensitive to
variations of b.
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Fig. 4. Bifurcation diagram in the a-ε plane

B. Bifurcation phenomena in the a-ε plane

Figure 4 shows a bifurcation diagram of the system in the
a-ε plane (b = 15, c = 4 × 10−9). By altering three resistors
and two capacitors, we can scan and confirm all phenomena
in this diagram.

From the Hopf bifurcation set, we confirmed oscillatory
behavior in the right-hand side region. Since there exist PD
cascades along the arrows (⇒) in the Fig. 4(A), (B), chaotic
states are expected. In fact we observe them, see Fig. 5(a),
(b). One can recognize the fish-hook structure composed by
I , I2 and G2.

The Hopf bifurcation does not undergo the influence of the
parameter ε from Fig. 4 because it forms a straight line. In
other words, it implies that the two capacitors do not influence
the oscillations of the circuit. When ε increases, the chaotic
region is lost. Note that the solution diverges for ε < 0.1.
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Fig. 5. Phase portraits with ε = 0.15. (a) a = 0..285. (b) a = 0.705.
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Fig. 6. Bifurcation diagram in the b-ε plane

C. Bifurcation phenomena in the b-ε plane

Figure 6 shows a bifurcation diagram of the system in the
b-ε plane (a = 0.9, c = 4 × 10−9).

Basically, Fig. 6 can be split into two parts by the Hopf
bifurcation: oscillatory and non-oscillatory regions. Since there
exist PD cascades along arrows (⇒) in the Fig. 6(A), (B),
chaotic states are observed. One can recognize the fish-hook
structure composed by I , I 2 and G2 like it appears in the a-ε
plane.
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III. SYNCHRONIZATION IN COUPLED CIRCUITS

Inphase synchronization of periodic solutions is a common
phenomenon when two identical oscillators are coupled by
a register. In this section, we investigate synchronizations
in coupled oscillators as a bifurcation problem, and show a
synchronization region including chaos synchronization in a
bifurcation diagram.
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Fig. 7. Circuit model

From Fig. 7, we obtain a normalized equation set such as:

ẋ1 = y1

ẏ1 = ay1 − x1 − z1

εż1 = b + y1 − c(exp z1 − 1)
−δ(z1 + (a + γ)y1 − z2 − (a + γ)y2)

ẋ2 = y2

ẏ2 = ay2 − x2 − z2

εż2 = b + y2 − c(exp z2 − 1)
+δ(z1 + (a + γ)y1 − z2 − (a + γ)y2)

A. Bifurcation phenomena in the a-δ plane

Figure 8 shows a bifurcation diagram of the system in the a-
δ plane (b = 11.4, c = 4×10−9, ε = 0.13, γ = 1.0). The Hopf
bifurcation line splits the whole diagram into the oscillatory
and non-oscillatory regions. In the oscillatory region, since
there exist PD cascades, chaotic states are easily observed.
While the synchronous region is shown in the Fig. 8. Here
we define that synchronization is the vanishing of differences
between the corresponding variables, e.g, x1 and x2. We
confirm the synchronization by observation of phase portraits.
An automatic detection method will be examined in the future.
From Fig. 8(A), the synchronizing limit cycle can be observed,
and where PD cascades exist, chaos synchronization states are
observed. The attractors are shown Fig. 9. The synchronization
is also confirmed by the circuit implementation (Fig. 10). By
PD bifurcation I , it becomes an asynchronous period-2 state
from the synchronous limit cycle state of the Fig. 8(B). When
the parameter is changed, it becomes asynchronous chaos (Fig.
11). In the Fig. 8(C), asynchronous chaos is confirmed. The
degree of coupling strengthens when δ increases (Fig. 12).
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Fig. 8. Bifurcation diagram in the a-δ plane
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Fig. 9. Phase portraits with δ = 3.51. (a) a = 0.15. (b) a = 0.25. (c)
a = 0.34.
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Fig. 10. Circuit implementation results. The circuit parameters were the
following : L = 100mH, C = 100nF, C∗ = 22nF, R = 1kΩ, R0 =
20kΩ, R1 = 10kΩ, R2 = 4kΩ, R3 = 330kΩ.
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Fig. 11. Phase portraits with a = 0.9. (a) δ = 1.2. (b) δ = 1.1. (c) δ = 1.0

IV. CONCLUSIONS

In this paper, the bifurcation phenomenon of the simple
system and the coupled system was investigated in detail.

First of all, the phenomenon and the bifurcation occuring
in the simple system were analyzed. As a result, oscillatory,
non-oscillatory and chaotic regions were clarified by showing
the hopf bifurcation, PD bifurcations and T bifurcations in the
parameters plane. The concrete attractors were shown. The
influence that each element such as resistors and capacitors
have on the circuit was confirmed.
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Fig. 12. Phase portraits with a = 0.7. (a) δ = 1.0. (b) δ = 1.5. (c) δ = 0.3.

Next, the coupled system was analyzed. we investigated
chaos synchronization in the coupled system. As a result,
we were able to show synchronous regions and confirmed
the chaos sync. phenomenon. Moreover, synchronizations of
periodic and chaotic states are depicted in the bifurcation
diagram, and it is clarified that the period-doubling bifurcation
is deeply related with the loss of synchronization.

Finally, the chaos synchronization observed in theory was
confirmed practically in the circuit implementation.
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