
An Electric Circuit Analogue of a Mathematical Model
for Adaptive Transport Network in True Slime Mold

Yuta Kondo† and Hisa-Aki Tanaka†

†Department of Electronic Engineering, The University of Electro-Communications (UEC)
1-5-1 Choufugaoka, Choufu-shi, Tokyo 182-8585 Japan

Email: kondouyut@synchro2.ee.uec.ac.jp

Abstract—
An electric circuit analogue is obtained for a mathemat-

ical model of adaptive transport networks in true slime
mold. The proposed method is easily implemented on
SPICE and the shortest path is always found, as confirmed
by systematic simulations and analysis. The required time
for finding the shortest path is also numerically analyzed,
where a systematic comparison is made between the data
from the proposed method and the Dijkstra’s algorithm.

1. Introduction

Recently a pioneering study by Tero et. al. [1] has pro-
posed a new shortest path finding method derived from
observation of an amoeba-like organism, the true slime
mold Physarum polycephalum. Here, we propose a SPICE-
oriented shortest path finding method, which is an electri-
cal circuit analogue of [1]. From a systematic comparison
between the proposed method and the Dijkstra’s algorithm,
we found an interesting feature in the proposed method;
competing, multiple short paths are found simulaneously
at an early stage of our path finding process.

2. Mathematical Model for Transport Network in
Physarum polycephalum and Its Electric Circuit Ana-
logue

Experimental observations have uncovered that adap-
tive transport networks in true slime mold Physarum poly-
cephalum(; abbreviated as Physarum, below) have a short-
est path finding ability [2]. Motivated by this observation,
Tero et. al. [1] derived a simple mathematical model for
adaptive transport networks in Physarum, and they numer-
ically confirmed that the model shows a shortest path find-
ing ability.

In this section, we review the mathematical model in [1]
(2.1) and propose a circuit analogue of this model which is
easily implemented on SPICE (2.2).

2.1. Mathematical Model for Transport Network in
Physarum

We start from considering the adaptive transport network
in Physarum as shown in Fig. 1(a). Initially, we have set

Fig. 1 Network architecture in
(a) adaptive transport networks [1]
(b) nonlinear resistive circuits in the proposed method

two ‘food sources’ N1 and N2 in the network. The net-
work is formed with bunch of ‘tubes’ that are filled with
certain liquid transporting nutritions and sensing informa-
tions. The tube is denoted as Mi j that connects the nodes Ni

and N j. If there are multiple tubes connecting the same pair
of nodes, we distinguish these tubes as M1

i j and M2
i j. The

total numbers of tubes and nodes are M and N, respectively.
In [1] the dynamics of network adaptation in Physarum is
modelled from the experimental observations [2] and the
physiological data (for detail, see [1]), as follows.

First the variable Qi j is introduced, which is the flux
through Mi j from Ni to N j. As a Poiseuille flow is assumed
in the tube, the flux Qi j is given by

Qi j =
Di j

Li j
(pi − p j), (1)

where pi is a pressure at the node Ni, Li j is a length of the
tube Mi j and Di j is its conductivity. As the total amount of
liquid is concerved, Kirchhoff’s law holds at each node;∑

i

Qi j = 0, (j , 1, 2). (2)

If the food sources N1 and N2 act as the source and the sink
respectively, the following two equations hold∑

i

Qi1 + I0 = 0,
∑

i

Qi2 − I0 = 0, (3)

where I0 is the flux from the source node. In [1] this I0 is
set to be a constant.

2007 International Symposium on Nonlinear Theory and its
Applications
NOLTA'07, Vancouver, Canada, September 16-19, 2007

- 521 -

To model the adaptation of tubular thickness to the flux
Qi j, the conductivity Di j is assumed to change in time as

d
dt

Di j = f (|Qi j|) − rDi j, (4)

where f (Q) is a certain increasing function with f (0) = 0.
By this equation, the conductivity Di j decreases to 0 by its
self, but it can be increased when a certain amount of flux
exists in the tube Mi j. For simplicity, the function f is given
as f (|Qi j|) = α|Qi j| and a simple equation of Di j is obtained
as

d
dt

Di j = α|Qi j| − rDi j. (5)

Then, by solving Eq. (5) we have Di j at time t; Di j(t).
Using this Di j(t), Qi j(t), pi(t), and p j(t) are determined by
Eqs. (1), (2), and (3). More precisely, Eqs. (1), (2), and
(3) contain M + N equations with M + N unknown vari-
ables. However, as pi appears in the form of pi − p j, it
remains arbitrariness. To remove this arbitrariness, we as-
sume p2(t) ≡ 0. This assumption is reasonable because the
pressure p2 is always 0 at the sink node N2.

2.2. Electric Circuit Analogue

Here, we consider an electric circuit analogue of the
mathematical model [1]. Such an analogue can be obtained
quite naturally, if we assume the flux Qi j as the current Ii j,
the pressure pi as the voltage Vi, and D−1

i j as the unit resis-
tance Ri j. Then, equivalent circuit equations are obtained
for Eqs. (1), (2), (3), and (5) in terms of Ii j, Vi j (≡ Vi−V j),
and Ri j. Circuit analogue of Eqs. (1), (2), and (3) is sim-
ple, because these equations represent linear relations of Ii j

and Vi j. On the contrary, circuit analogue of Eq. (5) is
nontrivial, because it might not be an easy task to directly
implement an Eq. (5) analogue with ‘known’ simple circuit
elements.

Here, using SPICE as a reliable circuit analyzer in mind,
we propose a nontrivial circuit analogue of Eq. (5) as fol-
lows. First, from Eqs. (1) and (5), an equivalent circuit
equation is obtained as

d
dt

Ii j

Vi j
Li j = |Ii j| −

Ii j

Vi j
Li j, (6)

where Li j is the length of the ‘resistance’ between node i
and j. In Eq. (6), we assume the time evolution of Vi j is rel-
atively slow, compared to that of Ii j (which is confirmed in
simulations, later). Then, for an infinitesimally short time
span, Vi j becomes a constant and the following is obtained
directly from Eq. (6):

d
dt

Ii j = |Ii j|
Vi j

Li j
− Ii j, (7)

where the solution of Ii j is given by

Ii j = I0exp
{(

Vi j

Li j
− 1

)
t
}
, (8)

and

Ii j = −I0exp
{(−Vi j

Li j
− 1

)
t
}
, (9)

for the initial Ii j = Ii j(t0) ≡ I0 > 0 and for Ii j(t0) = −I0 < 0
respectively.

It is noted that in Eqs. (8) and (9) Vi j can be time-
dependent as far as its change in time is slow, compared to
Ii j. What we see in Eqs. (8) and (9) is that the current Ii j is
given as a strange form of the voltage and time-dependent
current source.

However, in finding the unknown shortest path in the net-
work, the directions of links between adjacent nodes (; the
direction of current Ii j) are not known in advance. Then,
we propose a linear combination of Eqs.(8) and (9) to alle-
viate the above point as

Ii j = exp
{(

Vi j

Li j
− 1

)
t
}
− exp

{(−Vi j

Li j
− 1

)
t
}
, (10)

where I0 = 1 is assumed in Eqs. (8) and (9). It is noted
that Eq. (10) becomes 0 at t = 0 and it can be easily imple-
mented as a voltage-dependent current source.

Thus far, we have derived a circuit analogue of the model
[1] which can be easily implemented on SPICE. In simulat-
ing this circuit on SPICE, we set a constant current source
(∼ 10[A]) between node N1 and N2, and connect a large re-
sistance R (∼ 100[kΩ]) in parallel to the nonlinear resistive
circuit in which each link has the current source of Eq. (10).
Then, this path finding circuit is simulated until all currents
reach to steady values, which is judged by the time change
of all currents becomes less than a threshold (∼ 1.0 ×10−3

for instance).

3. Systematic Comparison of Path Finding Times be-
tween the proposed method and the Dijkstra’s algo-
rithm

 0

 0.005

 0.01

 0.015

 0.02

 0 400 800 1200

re
al

 ti
m

e
[s

]

number of nodes N

O(M log N)~O(N log N)

Fig. 2 Elapsed times for the Dijkstra’s algorithm

To make a systematic comparison between the pro-
posed method and the Dijkstra’s algorithm for its path
finding ability, first we have generated randam networks

- 522 -

 0

 350

 700

 1050

 1400

 0 400 800 1200
 0

 600

 1200

 1800

re
al

 ti
m

e
[s

]

vi
rtu

al
 ti

m
e

[s
]

number of nodes N

a

b

c

d

e

Fig. 3 Elapsed times for the proposed method

-10

 0

 10

 0 100 200

C
ur

re
nt

 [A
]

Time [s]

N=64

(a)

-10

 0

 10

 0 100 200

C
ur

re
nt

 [A
]

Time [s]

N=64
(case a in Fig. 3)

(b)
Fig. 4 Path finding process in the proposed method
(a) fast convergence case
(b) slow convergence case

with N nodes and M(= 4N) links for different N; N =
25, 26, 27, 28, 29, 210. For each N, 10 networks are gener-
ated and the both two algorithms are applied to each net-
work.

Figures 2 and 3 shows the computation times for the
Dijkstra’s algorithm and for the proposed method, respec-
tively. In Fig. 2 , we show a comparison between the real

1st shortest 2nd shortest
data a 53 54
data b 264 265
data c 577 579
data d 1319 1324
data e 825 829

Fig. 5 First and second shortest paths found for data ‘a’,
‘b’, ‘c’, ‘d’, ‘e’ in Fig. 3

elapsed times on PC (plotted with �), their average (×), and
virtual elapsed times (; time complexity of O(MlogN) ∼
O(NlogN) [3]). As we observe in Fig. 2 , the real elapsed
time shows the same increasing tendency with respect to
N, compared to the theoretical estimates of O(NlogN). It is
noted that the above elapsed times on PC correspond to the
essential computation in the Dijkstra’s algorithm; we have
carefully removed elapsed times which are not directly re-
lated to the Dijkstra’s algorithm, such as times for initial-
ization and data file generation in the program.

In Fig. 3, a comparison is shown for the real elapsed
times on SPICE (plotted with �), virtual elapsed times (�;
elapsed times in the ‘virtual’ circuit on SPICE), and their
average (×). We observe interesting features on the virtual
elapsed times in Fig. 3;
(i) In all cases except for the data points ‘a’, ‘b’, ‘c’, ‘d’,
and ‘e’ in Fig. 3, the circuit finds the shortest path within
around 200[s], irrespective to the number of nodes N.
(ii) The average time (×) for the above cases does not have
an apparent increasing tendency with respect to N, namely
its time complexity seems to be nearly O(1).

To get an insight to the above observation, we have nu-
merically analyzed the time course of path finding process
in the proposed method in detail. Figs. 4(a) and 4(b) show
two typical examples from fast convergence cases and slow
convergence cases, respectively. As we observe in Fig.
4(a), in all examples except for ‘a’, ‘b’, ‘c’, ‘d’, and ‘e’,
the shortest path (denoted by ◦ in Fig. 4(a)) can be found
within 200[s], while other paths (�) quickly disappear, ir-
respectively to N. As opposed to these fast convergence
cases, we have slow convergence cases ‘a’, ‘b’, ‘c’, ‘d’,
and ‘e’ as shown in Fig. 3. For all these five cases, we
observe two groups of solutions (; ◦ and � in Fig. 4(b))
are initially competing in path finding process. The ap-
pearance of these two competing groups should explain the
slow convergence to the final shortest path, a steady solu-
tion. Interestingly, we found that these two groups of solu-
tions correspond to the first and the second shortest paths
in the network. As shown in Fig. 5, these two compet-
ing paths have quite similar path lengths. This fact suggest
that the slow convergence in these larger networks comes
from the same mechanism analytically explained in small
networks.

From an application point of view, the above observation

- 523 -

suggest an interesting nature of the proposed method (and
possibly of the model in [1] as well); competing multiple
paths are found simultaneously at an early stage of path
finding process. Works in this direction will be reported
elsewhere. The real elapsed time on PC (�) in Fig. 3 is
mainly due to the numerical integration scheme in SPICE,
which is one of the most reliable, but possibly the compu-
tationally heaviest software on PC. Works for accelerating
the proposed path finding method are ongoing.

4. Conclusions

We proposed a SPICE-oriented path finding method ob-
tained from [1], which shows quite different characteristics,
compared to the Dijkstra’s algorithm. One of the interest-
ing characteristics obtained in the proposed method is that
competing multiple paths are found simultaneously at
an early stage of path finding process. We expect more
difficult (; NP-complete) problems can be attacked in the
spirit of the proposed method thanks to Physarum.

Acknowledgments

We deeply thank Drs. A. Tero, T. Saegusa, T. Naka-
gaki, and R. Kobayashi. One of the authors (H. T.) thanks
Dr. K. Yamamura for kind comments on SPICE. This
work was supported in part by the Ministry of Educa-
tion, Science, Sports and Culture, through a Grant-in-Aid,
18560370 (2006).

References

[1] A. Tero, R. Kobayashi, and T. Nakagaki, “Physarum
solver: A biologically inspired method of road-
network navigation” Physica A, 363, pp. 115–119,
2006.

[2] T. Nakagaki, H. Yamada, and A. Toth, “Maze-solving
by an amoeboid organism” Nature, 407, p. 470, 2000.

[3] T. Ibaraki, “Dijkstra’s algorithm for Shortest Path
Problem” Ibaraki Laboratory. (online), available
from 〈http://ist.ksc.kwansei.ac.jp/ ibaraki/〉，(accessed
2007-2).

- 524 -

	Navigation page
	Session at a glance
	Technical program

