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Abstract

We propose an efficient Spice-oriented design algorithm
of amplifies for attaining both the DC maximum gains and
the low power consumptions. Our optimization algorithm is
based on a well-known steepest descent method combining
with nonlinear programming, which is realized by equiva-
lent RC circuits composed of ABMs (analog behavior mod-
els) of Spice. The optimum parameters are given by the
equilibrium points of the transient analysis. We show our
Spice-oriented optimization algorithm using the sensitivity
circuits in section 2, and the interesting illustrative examples
are shown in section 5.

section

1. Introduction

Amplifiers are widely used as the building blocks of many
analog circuits [1-4]. There are many kinds of designing
items such as the maximum gain, low power consumption,
minimum distortion and so on. We consider here a design
problem for attaining both the maximum gains and the lower
consumptions of amplifiers. These circuits are realized by
setting suitable bias voltages of transistors and/or choosing
suitable sizes (length, width) of MOSFETs, and the resistive
values. Traditionally, these optimization parameters have
been found by trial and error methods with Spice simula-
tions and the experimental knowledge of the designers. How-
ever, it is really time-consuming for the circuits containing a
large number of optimization parameters [6,10]. Therefore,
we propose here a simple fully Spice-oriented steepest de-
scent optimization algorithm combining with nonlinear pro-
gramming. Firstly, we define the objective function to be
minimized as follow;

Φ(x,p), x ∈ Rn, p ∈ Rk (1)

where
x: circuit variables such as voltages and currents.
p: optimization parameters such as bias voltages, resistor’s
values and the dimensions of MOSFETs W[width, µm] and
L [length, µm] and so on.

Our optimization technique based on the steepest descent
algorithm is realized by the equivalent RC circuits, whose
input currents are obtained by the sensitivity circuits [8] and
the deviation circuits. The gradient direction for attaining
the maximum gain is given by

dpi

ds
= −dSv(p)

dpi
, i = 1, 2, . . . , k, (2.1)

where S(p) is the gain, and pi is a optimization parame-

ter. Unfortunately, it is impossible directly to evaluate dS(p)
dpi

from the sensitivity analysis, so that we introduce the nu-
merical differentiation as follows;

dpi

ds
= −Sv,i(p + ∆p)− Sv(p)

∆pi
, i = 1, 2, . . . , k,

∆p = (0, 0, . . . , ∆pi, . . . , 0)T (2.2)

with sufficiently small ∆p. Replacing the auxiliary variable
“s” by time “t”, our descent algorithm can be realized by the
equivalent nonlinear RC circuits, and the optimum parame-
ters can be found by the equilibrium point of the transient
analysis. To design low power circuits, we need further to
modify the algorithm (2.2) which is shown in section 2.2.

2. Sensitivity analysis and
Spice-oriented optimization algorithm

2.1 Sensitivity analysis: The steepest descent method is
the most basic optimization approach, where the gradient
direction is decided by solutions of the sensitivity circuit.
Let us derive the sensitivity circuit via tableau approach [8].
The tableau equation is given by;[

Ki Kv 0
0 1 −AT

A 0 0

][
i
v
vn

]
−

[
g(v, i)

E
AJ

]
=

[
0
0
0

]
(3)

The first row is the Ohm’s law where bfKi,Kv consist of
1 and 0 elements, the second and third rows are Kirchhoff’s
voltage and current laws, respectively. A is the incidence
matrix. E and J show the voltage and current sources. Now,
define the sensitivity as follow;
Sensitivity:

Sk,i ≡ lim
∆pi→0

∆xk

∆pi
(4)

We can derive the sensitivity tableau equation as follows;[
Ki Kv 0
0 1 −AT

A 0 0

][
Si,pi

Sv,pi

Svn,pi

]
−

[ ∂g(v,i)
∂v

∣∣
v0,i0

Sv,pi

0
0

]

−
[ ∂g(v,i)

∂i

∣∣
v0,i0

Si,pi

δ(i)
Aδ(i)

]
=




∂g(v,i)
∂p

∣∣
v0,i0

δ(i)

0
0


 (5)

where δ(i) means a delta function satisfying

1 2 . . . i . . . k
δ(i) = [0, 0, . . . , 1 . . . , 0]T

Thus, we can develop the sensitivity circuit for any pi pa-
rameter. Observe that the circuit configuration is equal to
the original except for the nonlinear elements being replaced
by the linear incremental resistors at the operating points
V0, I0. Now, we summarize the algorithm for deriving the
sensitivity circuit.
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1. When one voltage source is chosen as an optimization
parameter, the voltage is set to “1[V]”. The other volt-
age sources are removed by the short-circuits.

2. When one current source is chosen as an optimization
parameter, the current is set to “1[A]”. The other cur-
rent sources are removed by the open-circuits.

3. When resistor is chosen as an optimum parameter, it
is replaced by the linear incremental resistor with the
controlled source ∂g(v,i)

∂p

∣∣
v0,i0

δ(i). Other resistors are

only replaced by the incremental resistors.

Example 1: Now, consider a simple example nonlinear cir-
cuit shown in Fig.1(a), where the nonlinear resistor is

i = c1v + c3v
3.

Let us calculate the gain Sv = dv/dE. For the optimum pa-
rameter E, we have the sensitivity circuit shown by Fig.1(b).

E

R 1 R 1

(a) (b)

v

i S i

G(v  )0

1
S v

Fig.1 (a) Simple nonlinear resistive circuit, (b) the sensitivity

circuit for the optimization parameter E.

The sensitivity is given by

Sv =
1/G(v0)

R1 + 1/G(v0)
=

1

1 + R1G(v0)
, for G(v0) = c1 + 3c3v2

0

where v0 is the voltage of nonlinear resistor in Fig.1(a).
2.2 Spice-oriented optimization technique: Now, con-
sider optimization problems for attaining both the DC max-
imum gain and the low power consumption of amplifier. In
this case, the steepest descent method for attaining the max-
imum gain given by (2.2) is modified as follows;

dpi

ds
= K(IS − Ii(p + ∆p))− Sv,i(p + ∆p)− Sv(p)

∆pi
(6)

K =

{
0 : IS > Ii

A : IS ≤ Ii for sufficiently large A

∆p = (0, 0, . . . , ∆pi, . . . , 0)T

where IS is the assigned current of the sources, which should
be set smaller value for the design of low consumption cir-
cuits. In this case, the solution curve of (6) will move to
the maximum point during IS > Ii. When the curve has
reached to the hyper-plane Ii = IS , it will moves on the
plane and search the maximum point on the plane if we
choose a sufficiently large constant A. Thus, we can find the
point satisfying both the maximum gain and the low power
consumption. Replacing the variable “s” by time “t’ in (6),
it is realized by RC circuit shown in Fig.2.

C R0

+

-

p
-

∆p

p( )-SS

i

i

i

i=1,2, ..., k

(p+∆p)
SK(I  -I i )(p+∆p)

v

Fig.2 A circuit configuration for attaining both the maximum

gain and the low power consumption.

The controlled current sources in the figure { Sv,i(p +
∆p), Ii(p + ∆p), i = 1, 2, . . . , k } are obtained from the
k sensitivity circuits and the small deviation ∆p circuits,
respectively. Thus, the optimization parameters satisfying
both the maximum gain and the low power consumption can
be found at the equilibrium points of the transient analysis
of (6). Note that although C’s in Fig. 2 are set equal to
“1” in (6), the convergence ratio will be largely increased by
choosing the smaller values. R0’s are sufficient large dummy
resistances to avoid C-J cut-set.

3. Sensitivity modules of MOSFETs and
bipolar transistors

Now, let us develop the sensitivity modules of MOSFETs
and bipolar transistors. Once these modules are stored in
our computer library as the packages, we can easily formu-
late the sensitivity circuits.
3.1 Sensitivity module of MOSFET: We consider
Shichman-Hodges model [1-4] of nMOS in Fig.3(a);

1. Linear region(vGS > vT , 0 < vDS < vGS − vT )

iD =
knW

L

[
(vGS − vT )− vDS

2

]
vDS(1 + λvDS) (7.1)

2. Saturation region(vGS > vT , vDS ≥ vGS − vT )

iD =
knW

2L
(vGS − vT )2(1 + λvDS) (7.2)

where the threshold voltage is given by

vt = vT0 + γ

(√
φ− vBS −

√
φ

)
, (7.3)

where W and L are the width and length. For simplicity, we
rewrite (7) in the following form;

iD = îD(vGS , vDS , vBS , W, L) (8)

Then, we have the following variational equation;

∆iD =
∂îD

∂vGS
∆vGS+

∂îD

∂vDS
∆vDS+

∂îD

∂vBS
∆vBS+

∂îD

∂W
∆W+

∂îD

∂L
∆L

(9)
Therefore, the sensitivity variables are given for each opti-

mization parameter pi

SiD,pi =
∂îD

∂vGS
Svpi,GS +

∂îD

∂vDS
Svpi,DS +

∂îD

∂vBS
Svpi,BS

+
∂îD

∂W
δ(pi, W ) +

∂îD

∂L
δ(pi, L) (10)

where δ means

δ(x1, x2) =

{
1 for x1 = x2

0 for x2 6= x2

Thus, we have the MOSFET module shown in Fig.3(b),
where

GGS =
∂îD

∂vGS
, GDS =

∂îD

∂vDS
, GBS =

∂îD

∂vBS

SiD
=

∂îD

∂W
δ(pi, W ) +

∂îD

∂L
δ(pi, L).

D

G

S

B

(a) nMOS

vB

vD iD

vG

iSvS

D

S

B
S

(b) nMOS module

DSG S
BSG S

G

pi,DS pi,BS

iD

GSG Spi,GS

Fig.3(a) nMOS, (b) nMOS module.
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3.2 Sensitivity modules of bipolar transistor: Bipo-
lar transistor is usually modeled with Ebers-Moll model or
Gummenl-Poon model [1-4]. The corrector current iC and
base current iB are functions of vBE and vBC as follows;

iC = îC(vBE , vBC)

iB = îB(vBE , vBC)

}
(11)

Therefore, the sensitivities for optimization parameters pi

are given by

SiC ,pi = ∂îC
∂vBE

∂vBE
∂pi

+ ∂îC
∂vBC

∂vBC
∂pi≡ GiC ,vBE

Svpi,BE + GiC ,vBC
Svpi,BC

SiB ,pi = ∂îB
∂vBE

∂vBE
∂pi

+ ∂îB
∂vBC

∂vBC
∂pi≡ GiB ,vBE

Svpi,BE + GiB ,vBC
Svpi,BC





(12)

Thus, the sensitivity module of NPN bipolar is given by
Fig.4(c)1.
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Fig.4(a) NPN bipolar transistor, (b) Ebers-Moll model, (c)

sensitivity modue of transistor module.

4. Resistive models of RC circuits

The left hand side of our Spice-oriented optimization method
shown in Fig.2 is composed of the controlled-current sources
which are obtained from the small deviations ∆pi circuits
and the sensitivity circuits. Both circuits are resistive.
Therefore, our optimization method should not contain any
dynamical elements such as capacitors and inductors. On
the other hand, many kinds of amplifiers may consist of ca-
pacitors so that we need approximately to transform them
into the resistive models. We propose two types modeling
as follows;

1. The model 1 is replacing each capacitor with the
impedance

ZC = | 1

jωC
=

1

ωC
(13.1)

2. The model 2 is replacing the series and parallel RC
circuits with the corresponding impedances as follows;

ZRC,S =

√
R2 +

1

ω2C2
, ZRC,P =

R√
1 + ω2C2R2

(13.2)

Example 2: Consider a simple circuit containing a series
and a parallel RC circuits as shown in Fig.5(a).

C R

C RE

1
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1

2

+

-

V

 

Exact

0

0.2

0.4

0.6

0 2 4 6 8
10 10 10 10 [rad/sec]

[mA]

Modeling 1

Modeling 2

Resistive models of RC circuit

Fig.5(a) A simple RC circuit, (b) Frequency response
curves. R1 = R2 = 10[kΩ], C1 = 1[µF ], C2 = 10[pF ]

1The method can be also applied to Gummel-Poon model of
bipolar transistor.

All the frequency response curves by models 1 and 2 are
almost same except for the cut-off frequency regions. Note
that even if the model 2 is complicate model compared with
model 1, the response curve with model 2 is much more exact
than that of model 12.

5. Illustrative examples

5.1 CMOS two-stage amplifier [4]: Consider a two-
stage amplifier as shown in Fig.6(a). Let us design it satis-
fying both the maximum gain and low power consumption.

Q Q Q

Q Q

Q Q Q

J
R

CC

V

-v +v

V

L0

8 8 9

1 1

3 3 6

SS-

+
DD

L

Vout

Fig.6(a) Two stage CMOS amplifier.
VDD = 2.5[V ], VSS = −2.5[V ], Frequency =1[MHz]

C0 = 10[nF ], CL = 1[nF ]

For the MOS and the circuit parameters from ref.[4]:

Kp = 19.344[µA], pVT0 = −0.8311[V ], pλ = 0.1
pW9 = 10[µm], pW8 = 50[µm], pW1 = 50[µm],
Kn = 74.209[µA] nVT0 = 0.6081[V ], nλ = 0.2
nW3 = 1[µm] nW6 = 3[µm], pL = nL = 0.5[µm]
J = 90[µA]

We get Gain=-1.956 from the transient analysis of Spice.
Next, we design the CMOS circuit with the initial conditions
as follows; pW9 = 2[µm], pW8 = pW1 = nW6 = 5[µm]
nW3 = 10[µm], J0 = 5[µA] and C = 0.01, R0 = 1000[kΩ]
in the steepest descent method in Fig.2. We have restricted
the following 6 optimization parameters as follows;

1.5[µm] < pW9, pW8, pW1, nW3, nW6 < 60[µm]
5[µA] < Iin < 200[µA]

Then, we have obtained the results of Table 1.

Table 1 Simulation results.
No A IS Iin J GainD GainT RL

(µA) (µA) (µA) (kΩ)
1 - - 120.1 55.3 -19.6 -19.6 -

104 50 52.4 23.3 -19.1 -20.1 -
2 105 50 49.8 22.5 -20.4 -21.5 -

106 50 49.6 22.4 -20.4 -21.5 -
106 40 39.6 17.7 -3.30 -3.33 10

3 106 40 39.7 17.7 -13.1 -13.3 100
106 40 39.7 17.7 -18.7 -19.6 1000

where A is a sufficiently large constant in (6), and the
computational time was around 225-230[sec]. Firstly, we
have assigned IS which is the current from bias VDD. It
is equal to sum of the current source J and the current
to VSS . Iin, GainD are the current and gain obtained by

2Parasitic capacitors in transistors can not be neglected in
the high frequency. We recommend to use model 1 even if it is
erroneous, because the circuit configurations are complicate.
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our optimization, and GainT is the gain estimated by the
transient analysis of Fig.6(a). We found interesting results
as follows;

1. No.1 is the optimization result for only attaining the
maximum gain without no restrictions. We have the
following sizes;

pW8 = pW1 = nW3 = 60[µm], pW9 = nW6 = 1.5[µm]

where we have set pL = nL = 0.5[µm] for all the MOS-
FETs. Then, the input current Iin = 120.1[µA] is large.
Note that this kind of simulation is called nonlinear
programming [5].

2. No.2 is the results for attaining both the maximum gain
and low power consumption (IS = 50[µA]) without cou-
pling capacitor (CL, RL), where we set A from 104 to
106 in (6). For A = 104, we had pW8 = 17.82[µm] and
Iin = 52.39[muA] which is different from the assigned
current IS = 50[µA]. Thus, we can conclude that we
need to choose larger A > 105.

3. No.3 is the results for the load impedances, where we
used the model 1 in (13.1) for the capacitor CL and C0;

ZC = | 1

jωCC
| = 159.

Although the gains are largely changed by the load re-
sistance RL, they are almost equal to the results from
the transient analysis.

-20

0

20

40

60

Gain_D

Input Current

J

[µA]
nW3

pW8

pW1

pW9,nW6
[µA]

[µ]

[µ]

[µ]

[µ]

Steepest descent method
CC=1[nF], RL=1000[kΩ]

8.2 8.4 8.6 8.8 9.0[mS]

Fig.6(b) Optimization of two stage CMOS amplifier.
RL = 1000[kΩ], CL = 1[nF ], Frequency =1[MHz]

5.2 Operational amplifier [4]: Consider an operational
amplifier shown in Fig.7(a). The maximum gain is attained
by choosing suitable resistors R1 −R5 in the figure.

R1 R2 R3

R4 R5 R6

Q1 Q2

Q3

Q4 Q5

Q6

Q7

Q8

Q9

-15v

+15vR1

+

-
vin

+

-
vin

+
-

Fig.7(a) Bipolar operational amplifier.

For parameter in ref[4],

R1 = 10[kΩ], R2 = 3[kΩ], R1 = 2.3[kΩ], R4 = 28[kΩ],
R5 = 15.7[kΩ], R6 = 3[kΩ]

We had the gain of 77.80[dB].
In order to attain the maximum gain, we have restricted the
optimization parameters as follows;

10[kΩ] < R1 < 55[kΩ], 1[kΩ] < R2 < 6[kΩ],
0.5[kΩ] < R3 < 5[kΩ], 40[kΩ] < R4 < 60[kΩ],

10[kΩ] < R5 < 50[kΩ], R6 = 3[kΩ]

Then, we had

R1 = 55[kΩ], R2 = 1.0[kΩ], R1 = 0.5[kΩ], R4 = 40[kΩ],
R5 = 50[kΩ], R6 = 3[kΩ]

whose maximum gain is equal to 87.07[dB]. The opti-
mization result of the steepest descent method is shown in
Fig.7(b). Thus, we can design the operational amplifier hav-
ing enough gain. The computation time was 36.95[sec].

Gain(x10000)

R  [x10kΩ]

R  [x10kΩ]

R  [x10kΩ]

R  [x10kΩ]1

4

5

R  [x10kΩ]2

3

Optimization

0 0.02 0.04 0.06 0.08 0.1[sec]

-1

0

1

2

3

4

5

6

Fig.7(b) Optimization result of operational amplifier.

6. Conclusions and remarks

In this paper, we propose a Spice-oriented design algo-
rithm of the amplifies for attaining both the maximum gain
and low power consumption. The algorithm is based on the
steepest descent method, which is realized by the nonlinear
RC circuits with ABMs of Spice. we found that our opti-
mization simulator is much faster than a simulator ASCO(A
SPICE Circuit Optimizer) [10].
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