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Abstract—A network based on the Inverse Function
Delayed (ID) model which can recall complex temporal se-
quences of patterns, is proposed. Complex pattern can be
dealt with by extending the network, for each main unit,
with buffer units that carries the role of a memory. Replac-
ing the cross correlated weight matrix with a matrix com-
puted from a linear separation problem point of view, these
pattern can be stored and recalled even if they are highly
correlated. It is shown that for a rather big network com-
plex patterns of degree 3, consisting of highly correlated
patterns, can be recalled.

1. Introduction

The dynamics of autocorrelation associative memory
can be extended to deal with temporal sequences of pat-
terns by storing pairs between consecutive states, making
the recall move from pattern to pattern istead of reaching an
equilibrium point. Time in form oftemporal order, hence,
plays a big part in temporal sequences of patterns. Another
important time aspect istime duration. When for exam-
ple a melody is to be recalled, since half notes are played
for one half the duration of the whole note, that should be
taken into consideration when dealing with melodies. Here,
the focus is layed on temporal order and how patterns that
appear more than once in the same sequence can be dealt
with by extending input space, from knowledge of only the
present state, to include association to memories.

2. Basic Equations

The model in this paper is based on the Hopfield
model [1][2], making it a Hopfield-type sequential asso-
ciative model for complex patterns in continuous time.

2.1. ID model

The ID model, which includes the biologically plau-
sible BVP model [3], was proposed by Nakajima and
Hayakawa [4] in 2002. The model has negative resistance
characteristics, which gives it interesting abilities. Further,
it allows the output function to be of an S-shape, hence it
can have hysteresis characteristics. The ID model is ex-
pressed by the following differential equations

τu
dui

dt
=

n
∑

j

wi jx j − ui, (1)

τx
dxi

dt
= ui − g(xi), (2)

whereτu andτx are time constants (τx << τu), ui andxi is
the inner potential and the neuron output, respectively,wi j

is the connection strength from thejth neuron to theith one
and typicallyg(x) = 1

β
arctanh(x) − Kx, whereβ andK are

constants.
Note that the dynamics of the ID model are equal

to those for the conventional dynamics of the Hopfield
model [2] if τx → 0 in Eq. (2). Further, the ID neuron
can be compared to a two-state hysteretic neuron [5] when
β → ∞ andτx → 0. Calling this neuron thelimit ID (LID)
neuron, here is its equations

τu
dui

dt
=

n
∑

j

wi jx j − ui, (3)

x(t) =



















−1 u(t) < −K
1 u(t) > K

nochange otherwise
(4)

Hysteretic properties have previously been implemented in
the autocorrelation associative memory model [5] and the
LID neuron itself has shown to improve the performance on
optimization problems, namely theN-queen problem and
the 4-colouring problem [6]. With the two-state neuron
hysteretic transfer function [7] the behaviour of the net-
work lies very close to the discrete model, in that sense
that the two state neuron suddenly makes a switch of out-
put. Hence, the capacity in the continuous time case can be
as high as in discrete time. The model in question, is con-
structed by LID neurons and conventional neurons(CN)
connected pairwise and defined as theLIDN-CN model,
giving the equations

τc
duc

i

dt
= sgn


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











n
∑

j

wi jx j

















− uc
i , (5)

xc
i = tanh(B · uc

i ), (6)
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τu
dui

dt
= xc

i − ui, (7)

x(t) =



















−1 u(t) < −K
1 u(t) > K

nochange otherwise
(8)

whereuc
i andxc

i are the inner potential and the output, re-
spectively, of the conventional neuron,τc a time constant
andB >> 1.

The weighted external input sum varies for each neuron,
causing them to approach the switching of states asynchro-
nously. It is imported to make this approach synchronised,
hence, the sign function can be used, making the flow for
each LID neuron coincide in strength. Realising this func-
tion with a continuous neuron (Eqs. (5) and (6)), however,
another feature of great importance is added - delay,τc,
which is an effective tool when it comes to dealing whith
distortion in the network. Adding initial distortion to the
inner potential of the LID neuron, the neurons are initally
unsynchronised.τc is then used to created a time frame in
which the neurons can switch, however unsyncronised, and
still making the network to be able to reach the next pat-
tern in the sequence [7]. Without the conventional neuron
paired with the LID neuron, temporal sequences of patterns
cannot be recalled.

2.2. Weight matrix

A sequence ofm patterns,~ξ1 − ~ξ2 − . . . − ~ξm, is typi-
cally stored in the connection weights of a fully connected
network, where the pattern vector~ξµ is patternµ, and~ξµ =
(

ξ
µ

1, . . . , ξ
µ
n

)T
∈ {-1, 1}n, wheren is the total number of neu-

rons and where superscript T denotes the transpose. Fur-
ther, the sequence is cyclic so that the first pattern follows
the last,~ξm+1 = ~ξ1.

The shortest subsequence of patterns that determines~ξµ

is called thedegree, g, of ~ξµ [11]. Hence, the degree of
the entire sequence is the maximum degree of its individ-
ual components. For asimple sequence, where each pat-
tern is unique, the transition from one pattern to its suc-
cessor is decided by the present state of the network and is
thus classified as degree 1. However, to recall a sequence
that contains duplicated patterns, knowledge of the present
state alone is not longer sufficient, additional associations
to previous memory states,a short-term memory, have to
be implemented. Such a sequence is of degree greater than
1 and is defined as acomplex sequence [11].

Storing the sequence in a cross-correlation matrix [1] lies
very close to what would result from iteration by the Hebb
rule [8]. However, since difficulties arise when dealing with
non-random patterns that have a lot of features in common
(letters of the alphabet etc.), the weight matrixW is com-
puted from a linear separation problem point of view, that
guarantees the storage [9]. The equation
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Figure 1: The LIDN-CN network for recall of complex
temporal sequences of patterns. Three main units and four
buffer units (two shaded) are plotted. The conventional
neuron of the main unit has connections from all other
LID neurons (main and buffer). The main unit at the bot-
tom of the figure has two buffers unit serially connected.
The buffer units are not connected to any other main units’
buffer units.

W~ξµ = ~ξµ+1, (9)

whereµ = 1, . . . ,m, would in case of complex patterns take
the form

W1~ξµ +W2~ξµ−1 + . . . +Wg~ξµ+g−1 = ~ξµ+1. (10)

From here, the behaviour of each neuron through the se-
quence is considered as a separate problem, each creating
a matrix of dimensionm × (n × g + 1). These matrices are
converted into reduced row-echelon form, from which the
weight matrices,W1 . . .Wg, can be computed row by row.

2.3. Complex sequences

A short-term memory model stores information about
the past components of a given input sequence, which al-
lows the network to establish a temporal association be-
tween consecutive patterns in a sequence. A simple way of
defining the dynamics in discrete time is by [10]

xi(k + 1) =
n
∑

j

w1
i j x j(k) +

n
∑

j

w2
i jx j(k − 1)+ . . .

+

n
∑

j

wg
i jx j(k − g − 1). (11)
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Figure 2: The complex sequence of patterns used in the example, spelled out S-E-N-D-A-I, F-U-K-U-S-H-I-M-A, T-O-
H-O-K-U. The network is 10× 10 neurons in size, with three sequences of total 21 patterns.

One can create a simple short-time memory, by using a
buffer of g units that storesg past states. In discrete time,
these are updated each time step [11], in continuous time,
however, one have to depend on time delay. In the model
presented here, each main unit is not only fully connected
to each other main unit, they are also connected to each
buffer unit, as seen in Fig. 1. The buffer units themselves
are serially linked one after another from the main unit they
are buffering, but are not connected to other main units’
buffer units.

For a network ofg = 2, the main units operates accord-
ing to the equations

τc
duc1

i

dt
= sgn

















n
∑

j

w1
i j x

1
j +

n
∑

j

w2
i jx

2
j

















− uc1
i , (12)

xc1
i = tanh(B1 · u

c1
i ), (13)

τu
du1

i

dt
= xc1

i − u1
i , (14)

x1
i = sgn

(

u1
i + K1x1

i

)

(15)

and the buffer units, delayed one pattern in time, according
to

τc
duc2

i

dt
= x1

i − uc2
i , (16)

xc2
i = tanh(B2 · u

c2
i ), (17)

τu
du2

i

dt
= xc2

i − u2
i , (18)

x2
i = sgn

(

u2
i + K2x2

i

)

. (19)

A network ofg = 3 only adds another buffer unit.

3. Results

Visual images of the letters in the alphabet are stored
consisting of 10× 10 neurons. In the example Japanese
names from the Miyagi prefecture are chosenSENDAI,
FUKUSHIMA, TOHOKU. The patterns can be seen in
Fig. 2. Adding these words one by one for recall of the
letters in a sequence, a network with degree 1, 2 and 3,
repspectively, is in need, according to

• degree(S ENDAI) = max(1, 1, 1, 1, 1, 1)= 1

• degree(S ENDAI|FUKUS HIMA)
= max(2, 1, 1, 1, 2, 2|1,2,1, 2, 2, 1, 2, 1,2)= 2

• degree(S ENDAI|FUKUS HIMA|TOHOKU)
= max(2, 1, 1, 1, 2, 2|1,2,2, 3, 2, 2, 2, 1,2|1,2,2, 2, 2, 3)
= 3

In order to recall a sequence of higher degree for a rather
large network, all the neurons have to be initialised from
the start i.e. not only the starting pattern (letter) is pre-
sented to the main units, but also previoius patterns have to
be presented for the buffer units. After that, recall works
smothly, each buffer unit remembering one state back in
time when the network goes through the sequence. The
state transition of the network can be seen in Fig. 3.

4. Conclusion

Two things were especially important in order to com-
plete the presented model.

Implement short-term memory. In order to recall com-
plex sequences, in where patterns appear more than once,
some kind of short-term memory needs to be implemented.
In discrete time this can easily be made with a buffer of g
units, that stores the most recentg inputs. In continuous
time, however the time step has to be replaced with time
delay. This was made possible with buffer units that feed
past states to the main units with the same time delay it
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Figure 3: State transition of the network, where each
dot (letter) represents one state of the network:SENDAI,
FUKUSHIMA, TOHOKU.

takes for the network to complete one transition from one
pattern to another.

Compute the weight matrix. Storing the temporal or-
der of sequences of patterns in a cross correlations matrix,
works well with randomly generated patterns, but not when
dealing with patterns that are highly correlated. One way
to deal with this problem is to preprocess the input to the
network, so that the sequence of patterns used in the actual
network contains a simulated randomness. For the observer
to understand content of the network, however, the output
has to go through the reverse process of the input manipu-
lation.

We chose another method, in where the network operates
with unmanipulated data, but with a weight matrix that, in-
stead of being based on the concept of correlation, is cal-
culated to guarantee the storage of data.

The present network needs to have both main units and
buffer units initialised, but future studies aim to decrease
the dependence of initialised buffer units. It is instead
shown that the present model can recall highly correlated
complex patterns of rather high dimension (=100) and de-
gree (=3).
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