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Abstract—In this paper, we propose a chaotic complex-
valued associative memory which can realize a dynamic
association of multi-valued patterns. The proposed model
is based on a complex-valued associative memory and a
chaotic associative memory. The complex-valued asso-
ciative memory can treat multi-valued patterns, and the
chaotic associative memory can recall stored patterns dy-
namically. The proposed model utilizes the properties of
these conventional models to realize the dynamic associ-
ation of multi-valued patterns. We carried out a series
of computer experiments and confirmed that the proposed
model realizes the dynamic association. And, we show the
influence of some parameters and state number for the dy-
namic association.

1. Introduction

Recently, neural networks are drawing much attention
as a method to realize flexible information processing. The
associative memories such as the Hopfield network[1], the
Bidirectional Associative Memory[2], the Episodic Asso-
ciative Memory[3] have been proposed. However, these
models can not deal with multi-valued patterns. Al-
though the associative memory using Self-Organizing Fea-
ture Map[4] which can deal with real-valued patterns has
been proposed, it is not robust for damage of neurons be-
cause it is based on the local representation. The complex-
valued associative memory whose input, output and inter-
nal state have the complex-value has been proposed[5]. It
can deal with multi-valued patterns and complex-valued
signals.

On the other hand, a number of studies on chaos have
been conducted. Chaos is the unpredictable phenomenon
which occurs in nonlinear dynamical systems. And, the
chaotic neuron model which considers the spatio-temporal
summation, refractoriness and continuous output has been
proposed[6]. It is known that dynamic associations can
be realized in the associative memories composed of the
chaotic neurons.

In this paper, we propose the chaotic complex-valued
associative memory which is introduced to the complex-
valued associative memory with chaos. The proposed
model realizes the association of multi-valued patterns by

using the complex-valued neuron models, and realizes the
dynamic associative of patterns by chaos.

2. Complex-Valued Associative Memory

In the complex-valued associative memory[5], the input,
the output, the internal state and the weight have complex-
value. The dynamics of the nth neuron in the complex-
valued associative memory is given by the following equa-
tion:

xn(t + 1) = f

 N∑
j=1

wn jx j(t)

 (1)

xn(t),wn j ∈ C

where xn(t) is the output of the nth neuron at the time t,
N is number of the neuron and wn j is the weight from the
jth neuron to the nth neuron. In the auto-associative type
complex-valued associative memory, the weight matrix w
is given by the following equation:

w =
P∑

p=1

X(p)X(p)∗ − PIN (2)

where P is the number of learning patterns, X(p)(p =
1, 2, · · · , P) is the pth learning pattern, IN is the N-
dimensional identity matrix, * is a conjugate transpose ma-
trix. The output function f (·) is given by the following
equation:

f (u) =
ηu

η − 1.0 + |u| η ∈ R (3)

where η is the constant (η > 1).

3. Chaotic Neural Network

The chaotic neuron model[6] which considers the spatio-
temporal summation, refractoriness and continuous output
introduces chaos into the conventional neuron model. The
dynamics of the chaotic neuron model is given by the fol-
lowing equation:

x(t + 1) = g

A(t) − α
t∑

d=0

kd x(t − d) − θ
 (4)
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where x(t) is the output of the neuron at the time t, A(t) is
the external input at the time t, α is the scaling factor of
refractoriness (α > 0), k is the dumping factor (0 ≤ k < 1),
θ is the threshold of the neuron. The output function g(·) is
given by the following sigmoidal function:

g(u) =
1

1 + exp(−u/ε)
(5)

where ε is the steepness parameter. The chaotic neuron
model can make a chaotic response using appropriate k and
α. The network which is composed of chaotic neurons is
called the chaotic neural network. The dynamics of the nth
chaotic neuron which has the M external inputs and the N
neurons is given by the following equation:

xn(t + 1) = g

 M∑
m=1

vnm

t∑
d=0

kd
s Am(t − d) (6)

+

N∑
j=1

wn j

t∑
d=0

kd
mx j(t − d)

−α
t∑

d=0

kd
r xn(t − d) − θn


where xn(t) is the output of the nth neuron at the time t,
vnm is the weight from the external input Am(t) to the nth
neuron, Am(t) is the mth external input at the time t, wn j is
the weight between the jth neuron and the nth neuron, ks,
km and kr are the damping factors, α is the scaling factor of
the refractoriness and θn is the threshold of the nth neuron.
Each term in g(·) is the external input, interconnections,
refractoriness. The chaotic associative memory is known
that is able to recall the stoard patterns dynamically.

4. Chaotic Complex-Valued Neuron Model

The proposed chaotic complex-valued neuron model
is introduced to the complex-valued neuron model with
chaos. The dynamics of the chaotic complex-valued neu-
ron is given by the following equation:

x(t + 1) = f

A(t) − α
t∑

d=0

kd x(t − d) − θ
 (7)

A(t), x(t), θ ∈ C k, α ∈ R

In Eq.(7), the output function of Eq.(5) is used to instead
of Eq.(3), and A(t), x(t) and θ are complex-value. If the
external input A(t) in Eq.(7) is constant(A(t) = A), Eq.(7)
is modified as the following equation:

x(t + 1) = f

A − α
t∑

d=0

kd x(t − d) − θ
 (8)

= f (ku(t) − α f (u(t)) + (A − θ)(1 − k))
= f (ku(t) − α f (u(t)) + a)
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Figure 1: Bifurcation diagram of internal state (real part).
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Figure 2: Bifurcation diagram of output (real part).

where u(t) is the internal state at the time t, a(= (A− θ)(1−
k)) is the bifurcation parameter. Figure 1,2 show the bifur-
cation diagram of real part of internal state and output at
α = 1.0, k = 0.8.

5. Chaotic Complex-Valued Associative Memory

Here, we explain the proposed chaotic complex-valued
associative memory. In the proposed model, dynamic asso-
ciation of multi-valued patterns is realized using the chaotic
complex-valued neuron model explained in 4.

5.1. Structure

The proposed chaotic complex-valued associative mem-
ory has N chaotic complex-valued neurons and N external
inputs. In the proposed model, the neurons are connected
each other. Figure 3 shows the structure of the proposed
model.

5.2. Learning of Proposed Model

In the proposed model, the weights are trained by the
correlation learning given by Eq.(2).

5.3. Dynamics

The dynamics of the nth neuron in the proposed model
is given by the following equation:

xn(t + 1) = f

 t∑
d=0

kd
s An(t − d) (9)
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Figure 3: Structure of proposed model.

+

N∑
j=1

wn j

t∑
d=0

kd
mx j(t − d)

− α
t∑

d=0

kd
r xn(t − d)


wn j, xn(t), An(t) ∈ C ks, km, kr, α ∈ R

where xn(t) is the output of the nth neuron at the time t,
An(t) is the external input of the nth neuron at the time t, wn j

is the weight between the jth neuron and the nth neuron.
xn(t), An(t) and wn j are complex value. ks，km，kr are the
dumpling factors, α is the scaling factor of refractoriness.
ks，km，kr and α are real value.

6. Computer Experiment Results

Here, we show the computer experiment results to
demonstrate the effectiveness of the proposed model.

6.1. Dynamic Asscotiation

The four-valued patterns shown in Fig.4 were memo-
rized in the chaotic complex-valued associative memory.
In this experiment, the parameters were set as follows:
N = 400, ks = 0.0, km = 0.1, kr = 0.9, α = 70, η = 1.1,
and the external input was set to 0. Figure 5 shows the
association result of the chaotic complex-valued associa-
tive memory when the pattern 2 was given. The outputs
of the chaotic complex-valued associative memory satisfy
|xn| < η, but the outputs are quantized in Fig.5. The outputs
are quantized as follows:

x̂n = argmin
ωs

(ωs − xn)∗(ωs − xn) (10)

s = 0, 1, . . . , S − 1

where x̂n is the quantized output of the nth neuron, S is the
number of the output states when the outputs are quantized,
and S was set to 4 in this explement. And, ω is given by
the following equation:

ω = exp
(
i
2π
S

)
(11)

pattern 1 pattern 2 pattern 3

: i

: 1

: −i

: −1

Figure 4: Learning patterns.

Figure 5: Association result when pattern 2 was given.

where i is the imaginary unit. In the complex-valued as-
sociative memory, the learning patterns are memorized as
the equilibrium set not the equilibrium point. It means that
the relation between the internal state and the output of the
complex-valued associative memory is given by Eq.(12).

exp(iβ)xn = g

 N∑
k=1

wnk exp(iβ)xk

 (12)

In this experiment, β is constrained at β = 2π
S s (s =

0, 1, . . . , S − 1), because the outputs are quantized. There
are S patterns which satisfy the constraint, and the pattern
is same as the learning pattern if s is 0. And, the patterns
of s = 1 ∼ S − 1 are included in the equilibrium set which
contains the learning patterns. In this paper, we call the
patterns of s = 1 ∼ S − 1 the “rotated pattern” to distin-
guish those from the learning pattern. Figure 6 shows the
rotated patterns of the learning pattern 2 in Fig.4. In Fig.6,
(a) is the learning pattern, and (b), (c), (d) are the rotated
patterns.

In Fig.5, when the pattern 2 was given at t = 0, the pat-
tern 2 was recalled during t = 1 ∼ 3. After that, the su-
perimposed pattern of the pattern 1 and the pattern 2 was
recalled. At t = 9, the rotated pattern of the pattern 2 was
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(a) pattern 2-1 (b) pattern 2-2 (c) pattern 2-3 (d) pattern 2-4

Figure 6: Example of rotated patterns.
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Figure 7: Energy transition of chaotic complex-valued as-
sociative memory.

recalled. Then, at t = 46, the pattern 3 was recalled after
the superimposed patterns of the pattern 1 and the pattern
3 were recalled. Figure 5 shows that the proposed model
whose parameters are set appropriately is able to recall the
stored patterns dynamically.

6.2. Energy Transition

The energy function of the proposed model is given by
the following equation:

E(x) = − 1
2

x∗wx (13)

where x is the output of the network, w is the weight matrix.
The energy E(x) is given by the real value, because w is the
Hermitian matrix. Figure 7 shows the energy transition of
the output in Fig.5. Figure 7(a) shows the energy transi-
tion of the output x in Fig.5. Figure 7(b) shows the energy
transition of the output when the output of x in Eq.(13)

is replaced by the quantized output x̂. Figure 7(a) shows
that the energy increases and decreases randomly. In the
complex-valued associative memory, the recalled patterns
correspond to the minimums of the energy. In contrast,
in the chaotic complex-valued associative memory, the re-
called patterns do not correspond to the minimums of the
energy. And the energy increases and decreases randomly,
because the refractoriness in Eq.(9) makes the output de-
part from the last output.

7. Conclusion

In this paper, we have proposed the chaotic complex-
valued associative memory which is able to recall the
multi-value patterns dynamically. The proposed model is
based on the complex-valued associative memory and the
chaotic associative memory, and the proposed model is
constructed of the chaotic complex-valued neuron models.
We carried out a series of computer experiments and con-
firmed that α and the state number influence dynamic asso-
ciations.
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