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Abstract—This paper deals with the cart-pendulum
modeled by discrete mechanics, which is known as a good
discretizing tool for mechanical systems. We first derive
the discrete model of the cart-pendulum. Next, the discrete
cart-pendulum is analyzed from the aspect of solvability.
We then derive a control algorithm to stabilize the discrete
cart-pendulum based on its linear approximation system.
Finally, simulations are shown to demonstrate effectiveness
of the proposed algorithm.

1. Introduction

Mechanical systems are normally expressed by ordinary
or partial differential equations as continuous-time mod-
els. Therefore, when we simulate these continuous-time
systems by computers, we have to approximate them by
discrete-time models with discretizing tools such as Runge-
Kutta method. However, it is well known that discretization
causes loss of properties of the original continuous-time
systems and numerical errors.

On the contrary,discrete mechanics, which is a direct
discretizing technique for mechanical systems, has been
researched recently [1, 2, 3]. It is known that discrete me-
chanics has some interesting properties: (i) it can describe
energies for conservative/dissipative systems with less er-
rors, (ii) some laws of physics such as Noether’s theorem
are satisfied. It is expected that discrete mechanics is avail-
able for designing controllers with a high affinity for com-
puters. However, there are few researches on control of
mechanical systems via discrete mechanics [4, 5].

This paper is concerned with the cart-pendulum modeled
by discrete mechanics. We analyze the implicit discrete-
time system of the inverted pendulum from the aspect of
solvability. Then, we derive a control law of the discrete-
time system based on its linear approximation system and
show some simulation results to demonstrate effectiveness
of proposed algorithm.

2. Discrete Mechanics

This section sums up basic concepts of discrete mechan-
ics [1, 2, 3]. LetQ be a configuration manifold andq ∈ R
be a generalized coordinate ofQ. We also refer toTqQ
as the tangent space ofQ at a pointq ∈ Q and q̇ ∈ TqQ
denotes a generalized velocity. Moreover, we consider a
time-invariant Lagrangian asL(q, q̇) : T Q→ R. We first
explain about the discretization method. The time variable

t ∈ R is discretized ast = kh (k = 0,1,2, · · · ) by using a
sampling intervalh > 0. We denoteqk as a point ofQ at
the time stepk, that is, a curve onQ in the continuous set-
ting is represented as a sequence of pointsqd := {qk}Nk=1 in
the discrete setting. The transformation method of discrete
mechanics is carried out by the replacement:

q ≈ (1− α)qk + αqk+1, q̇ ≈ qk+1 − qk

h
, (1)

whereq is expressed as a internally dividing point ofqk and
qk+1 with a ratioα (0 < α < 1). We then definea discrete
Lagrangian:

Ld
α(qk,qk+1) := hL

(
(1− α)qk + αqk+1,

qk+1 − qk

h

)
, (2)

anda discrete action sum:

Sd
α(q0,q1, · · · ,qN) =

N−1∑

k=0

Ld
α(qk,qk+1). (3)

We next summarize the discrete equations of motion. Con-
sider a variation of points onQ as δqk ∈ Tqk Q (k =

0,1, · · · ,N) with the fixed conditionδq0 = δqN = 0. In
analogy with the continuous setting, we define a variation
of the discrete action sum (3) as

δSd
α(q0,q1, · · · ,qN) =

N−1∑

k=0

δLd
α(qk,qk+1). (4)

The discrete Hamilton’s principle states thatonly a motion
that makes the discrete action sum (3) stationary is real-
ized. Calculating (4), we have

δSd
α =

N−1∑

k=1

{D1Ld
α(qk,qk+1)δqk + D2Ld

α(qk−1,qk)}δqk, (5)

whereD1 andD2 denotes the partial differential operators
with respect to the first and second arguments, respectively.
Consequently, from the discrete Hamilton’s principle and
(5), we obtainthe discrete Euler-Lagrange equations:

D1Ld
α(qk,qk+1) + D2Ld

α(qk−1,qk) = 0,

k = 1, · · · ,N − 1.
(6)

It turns out that (6) is represented as difference equations
which contains three pointsqk−1, qk, qk+1, and we need
q0, q1 as an initial condition when we simulate (6).
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3. Discrete Cart-Pendulum System

This section derives the discrete model of the cart-
pendulum system as shown in Fig. 1. Letθ ∈ S := (−π, π]
be the angle of the pendulum andz ∈ R be the position of
the cart. We set parameters of the systems: the mass of the
pendulumm, the mass of the cartM, and the length of the
penduluml. For sake of simplicity, we do not take account
of frictions. The Lagrangian of this system is given by

L =
1
2

ml2θ̇2 + mlθ̇żcosθ +
1
2

(m+ M)ż2 −mglcosθ. (7)

z0

θ m

M

l

Fig. 1 : The Cart-Pendulum System

From the discrete Lagrangian withqk = [ θk zk ]T:

Ld(qk,qk+1) =
m+ M

2h
(zk+1 − zk)

2 +
ml2

2h
(θk+1 − θk)

2

+
ml
h

cos{(1− α)θk + αθk+1}(zk+1 − zk)(θk+1 − θk)

−mglhcos{(1− α)θk + αθk+1},

(8)

and the control input to the cartuk, we can derive the dis-
crete Euler-Lagrange equation of the cart-pendulum system
as

−ml(1− α)(θk+1 − θk)(zk+1 − zk) sin{(1− α)θk + αθk+1}
−mlcos{(1− α)θk + αθk+1}(zk+1 − zk)

−ml2(θk+1 − θk) + mgl(1− α)h2 sin{(1− α)θk + αθk+1}
−mlα(θk − θk−1)(zk − zk−1) sin{(1− α)θk−1 + αθk}
+ mlcos{(1− α)θk−1 + αθk}(zk − zk−1)

+ ml2(θk − θk−1) + mglαh2 sin{(1− α)θk−1 + αθk} = 0,
(9)

and

− (m+ M)(zk+1 − zk)

−ml(θk+1 − θk) cos{(1− α)θk + αθk+1}
+ (m+ M)(zk − zk−1)

+ ml(θk − θk−1) cos{(1− α)θk + αθk−1} + huk = 0.

(10)

Substitutingθk−1 = θk = θk+1, zk−1 = zk = zk+1 and
uk = 0 into (9) and (10), we have sinθk = 0. There-
fore, the equilibria of the discrete cart-pendulum system
are (θk, zk) = (0, ze), (π, ze), ∀ze ∈ R, that is, they corre-
spond with those of the usual cart-pendulum in the contin-
uous setting. Finally, we calculate the linear approximation

system that behaves around the equilibriumθk = 0. Con-
sideringθk−1, θk, θk+1 ≈ 0 for (9) and (10), we obtain the
linear approximation system as

−ml(zk+1 − zk) + mgl(1− α)h2{(1− α)θk + αθk+1}
+ ml(zk − zk−1) −ml2(θk+1 − θk) + ml2(θk − θk−1)

+ mglαh2{(1− α)θk−1 + αθk} = 0

(11)

and

− (m+ M)(zk+1 − zk) −ml(θk+1 − θk)

+ (m+ M)(zk − zk−1) + ml(θk − θk−1) + huk = 0.
(12)

4. Solvability Analysis

By using appropriate functionsf andg, we can rewrite
(9) and (10) as

f (θk−1, θk, θk+1, zk−1, zk,uk) = 0, (13)

zk+1 = g(θk−1, θk, θk+1, zk−1, zk,uk). (14)

We can see that (14) is an explicit function forzk+1, how-
ever, (13) is an implicit function forθk+1. In general,
systems modeled by discrete mechanics contain some im-
plicit equations, hence we have to treat implicit nonlinear
discrete-time systems. In this section, we investigate solv-
ability of the discrete cart-pendulum system. We first ex-
plain some concepts of solvability for implicit nonlinear
discrete-time systems:

fk(xk, xk+1,uk) = 0, k = 0,1, · · · ,N − 1, (15)

wherek ∈ {0, · · · ,N} is a time step,xk ∈ Rn is a state,
uk ∈ Rm is an input andfk : Rn × Rn × Rm → Rr

is a nonlinear function. We often find implicit nonlinear
discrete-time systems in economics [6]. The class of im-
plicit nonlinear discrete-time systems contains descriptor
systems and is the largest in all of the discrete-time con-
trol systems. Luenberger [6] and Fliegner et al. [7, 8] dis-
cussedsolvability for such systems. If a given pair of a
state sequencex := (x0, x1, · · · , xN) and an input sequence
u := (u0,u1, · · · ,uN−1) satisfies all the equations of (15), it
is calledadmissible. A solvability matrixfor a admissible
pair (x,u) is defined by

F(x,u)(0,N) :=



G0 H1

G1 H2

. . .

GN−1 HN


,

Gi :=
∂ fi
∂xi

∣∣∣∣∣
(xi ,xi+1,ui )

, i = 0, · · · ,N − 1,

Hi :=
∂ fi
∂xi+1

∣∣∣∣∣
(xi−1,xi ,ui−1)

, i = 1, · · · ,N.

(16)

Solvability of the system (15) is defined as follows [8].

Definition 1: The implicit nonlinear discrete-time system
(15) is said to besolvableif the solvability matrix (16) has
a row full-rank for any admissible pair (x,u).
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In the simplest terms, solvability means the existence of
xk+1 for given xk anduk. In order to check solvability of
a given system,the shuffle algorithmbased on the implicit
theorem is introduced [8]. We can investigate solvability
by the rank of a finally obtained system in the algorithm.
Because of space limitations, we omit its details (see [8]).

We now check solvability of the discrete cart-pendulum
system. We can get the following by the shuffle algorithm.

Proposition 1: Assume that the sampling time is sufficient
small, i.e.,h� 1. Then, the discrete cart-pendulum system
(9), (10) is solvable at any point (θ, z).

We next consider solvability when the system behaves
around the equilibriumθk = 0 and the sampling timeh
is not subject to restrictions. The following can be derived.

Proposition 2: The discrete cart-pendulum system (9),
(10) is solvable around neighborhood of the equilibrium
point (0, z) if

−Ml + (m+ M)g(1− α)αh2 , 0 (17)

holds for its parameters.

From Proposition 2, if the sampling timeh satisfies

h ,

√
Ml

(m+ M)g(1− α)α
, (18)

the discrete cart-pendulum (9) and (10) is always solvable
around the equilibriumθk = 0. Since (17) is a sufficient
condition, the system has a possibility of solvability though
(17) fails.

5. Stabilization of Discrete Cart-Pendulum System

This section gives a stabilizing controller for the dis-
crete cart-pendulum system and shows some simulations.
We first set a state variable asxk = [ x1

k x2
k x3

k x4
k ]T =

[ θk θk+1 zk zk+1 ]T. From (11) and (12), we then obtain the
discrete-time linear control system:

xk+1 = Axk + Buk, (19)

where

A :=



0 1 0 0

−1
2Ml + (m+ M)g{(1− α)2 + α2}h2

Ml − (m+ M)g(1− α)αh2
0 0

0 0 1 0

0
−mlgh2

Ml − (m+ M)g(1− α)αh2
−1 2



,

B :=



0
−h

Ml − (m+ M)g(1− α)αh2

0
lh − (m+ M)g(1− α)αh3

Ml − (m+ M)g(1− α)αh2



.

By solving discrete-time optimal regulator problem for
(19), we design a controller in the form

uk = K1θk−1 + K2θk + K3zk−1 + K4zk, (20)

whereKi (i = 1, · · · ,4) are gain matrices. An algorithm to
stabilize the discrete cart-pendulum system is as follows.

Algorithm 1 :

Step 0 Decide initial statesθ0, θ1, z0, z1.

Step 1 Setk = 1. Deriveθ2 by solving

f (θ0, θ1, θ2, z0, z1,u1) = 0. (21)

with Newton method. Then, calculatez2 by

z2 = g(θ0, θ1, θ2, z0, z1,u1). (22)

Resetk = 2 and go to Step 2.

Step l Setk = l (l = 2,3, · · · ). Deriveθl+1 by solving

f (θl−1, θl , θl+1, zl−1, zl ,ul) = 0 (23)

with Newton method. Then, calculatezl+1 by

zl+1 = g(θl−1, θl , θl+1, zl−1, zl ,ul) (24)

If l < N, then resetk = l + 1 and go to Stepl + 1. If l = N,
the algorithm is over.

We now show simulations of the discrete cart-pendulum
by using Algorithm 1. The parameters are set asm =

0.04 [kg], M = 1.00 [kg], l = 0.15 [m], α = 0.5. The weight
matrices for the discrete-time optimal regulator problem
are set asQ = diag(1,0,1.0,5.0,5.0), R = 0.005. The ini-
tial states are given asθ0 = π/6 [rad], θ1 = π/6 [rad], z0 =

0.1 [m], z1 = 0.1 [m].
Fig. 3–5 depict time series ofθ andz with the sampling

timesh = 0.05, 0.1, 0.5, 1.0, respectively. Note that there
is no meaning of the dashed lines connecting the dots in
Fig. 3–5. From these figures, it is confirmed that the dis-
crete cart-pendulum is stabilized at any sampling time. It
is interesting that stabilization is performed at a large sam-
pling time such ash = 1.0. Therefore, we can say that it is
appropriate to design controllers for systems based on their
linear approximations in discrete mechanics.

0 0.5 1 1.5 2
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

time [s]

th
e

ta
 [

ra
d

],
 z

 [
m

]

theta

z

Fig. 2 : Time Responses ofθk andzk (h = 0.05)
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Fig. 3 : Time Responses ofθk andzk (h = 0.1)
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Fig. 4 : Time Responses ofθk andzk (h = 0.5)
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Fig. 5 : Time Responses ofθk andzk (h = 1.0)

6. Conclusion

This paper has analyzed the discrete cart-pendulum sys-
tem from the viewpoint of solvability of implicit nonlin-
ear discrete-time systems. Moreover, we have proposed a
stabilizing algorithm for the system and confirmed its ef-
fectiveness by some simulations. We can say that an ap-
plication of discrete mechanics to control theory has been
performed through the cart-pendulum system in this paper.
However, in order to apply discrete mechanics to control of
various mechanical systems, there is still room to study due
to difficulties of implicit nonlinear discrete-time systems.

Our future work is as follows: (i) solvability analysis of
general implicit nonlinear discrete-time systems modeled
by discrete mechanics, (ii) controller design by model pre-
dictive control and iterative learning control, (iii) experi-
ment of the cart-pendulum system.
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