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Abstract– This work reports on a numerical 
investigation on the nonlinear dynamics of a flexible rotor 
in active magnetic bearings.  The mathematical model of 
the flexible rotor - active magnetic bearing system used in 
this study incorporates nonlinearity arising from the 
magnetic actuator forces that are nonlinear functions of 
the coil current and the air gap between the rotor and the 
stator, and from the geometric coupling of the magnetic 
actuators.  The response of the rotor, with the variation of 
the speed parameter, Ω , displayed a rich variety of 
nonlinear dynamical behaviour including sub-
synchronous vibrations of periods-3, -6 and -9, quasi-
periodicity and chaos.  Such vibrations in the operation of 
rotating machinery is undesirable and should be avoided 
as they introduce cyclic stresses in the rotor, which in turn 
may rapidly induce fatigue failure. 

 
1.  Introduction 

 
The utilization of active magnetic bearings is found in 

a wide class of rotating machinery.  The main advantage 
of this type of bearings over the conventional bearings is 
their higher mechanical efficiency due to reduced friction 
losses since no contact occurs between the rotor and the 
bearing stator during operation of the machine.  The 
magnetic bearings are, however, highly nonlinear and 
their interaction with the rotor that they support can lead 
to various nonlinear phenomena in the rotor’s response.  
The most prominent source of nonlinearity in active 
magnetic bearings is the relationship between the forces 
generated in the electromagnetic actuator and the coil 
current and the air gap between the rotor and the stator.  
The force is proportional to the current squared and 
inversely proportional to the gap squared.  Cross-coupling 
between the electromagnetic forces acting in two 
orthogonal directions is also a source of nonlinearity in a 
magnetic bearing system.  One of the main causes of the 
cross-coupling effect is attributed to the geometry of the 
actuators.  The air gap at a point on a magnetic pole is 
actually not constant over the entire pole area due to the 
geometrical curvature of the pole.  This results in a 
normal force, which is perpendicular to the principal 
force, which in turn causes geometric coupling between 
these forces. 

There have been quite a number of published articles 
on the nonlinear dynamics of rotors supported in active 

magnetic bearings in recent years.  The effect of 
nonlinearity arising from cross-coupling due to 
gyroscopic motion on the response of a rigid rotor 
mounted in magnetic bearings examined in [1] showed 
the occurrence of Hopf bifurcation at certain values of 
operating speed.  Multiple co-existing solutions were 
found at primary resonance of a rigid rotor response in 
magnetic bearings incorporating nonlinearity due to 
geometric coupling of the actuators [2].  The effects of 
geometric coupling on the nonlinear response of a 
magnetic bearing supported rotor were also investigated 
in [3] and [4], revealing the occurrences of quasi-periodic 
and period-2 vibrations, and jump phenomena in the 
response of the rotor.  Numerical integration and 
numerical continuation methods were used to investigate 
the unbalance response of a rigid rotor in magnetic 
bearings [5].  This work showed the occurrence of 
symmetry-breaking and period-doubling bifurcations.  
The nonlinear response of a flexible rotor supported by 
magnetic and auxiliary bearings was numerically 
investigated in [6].  The results revealed sub-synchronous 
vibrations of periods-2, -4 and -8, and quasi-periodic and 
chaotic vibrations in the response of the rotor.  The 
stability and bifurcations of a flexible rotor supported by 
radial and thrust magnetic bearings were examined using 
the Floquet theory [7].  This work showed the importance 
of incorporating thrust magnetic bearings into the 
mathematical model of the rotor-bearing system, as they 
significantly influence the nonlinear dynamics of the 
system.    

In the work presented herein, the influence of operating 
speed on the nonlinear response of a flexible rotor in 
radial active magnetic bearings is numerically 
investigated.  Nonlinearity arising from the magnetic 
actuator forces that are nonlinear functions of the coil 
current and the air gap between the rotor and the stator, 
and from geometrical coupling of the magnetic actuators 
is incorporated into the mathematical model of the rotor-
bearing system.  

   
2.  Mathematical Model 

 
The derivation of the governing equations of the 

flexible rotor in active magnetic bearings is undertaken 
with the following assumptions being valid: (i) rotor is 
symmetric with part of its mass lumped at the rotor mid-
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span with the remainder at the bearing stations, (ii) rotor 
speed is constant, (iii) rotor and support stiffness are 
radially symmetric, (iv) damping force acting on the disc 
at rotor mid-span due to air dynamics is viscous, (v) rotor 
imbalance is defined in a single plane on the disc at the 
rotor mid-span, (vi) rotor motion in the axial direction is 
neglected, (vii) gyroscopic effect is neglected, (viii) 
leakage of magnetic flux is neglected, (ix) fringing effect, 
i.e., the spreading of magnetic flux in the air gap is 
neglected and (x) the magnetic iron is operating below 
saturation level.  Accounting for the external forces acting 
on the rotor mid-span and bearing journal that include the 
rotor imbalance force, shaft elastic force, viscous 
damping force, magnetic bearing forces, and gravity, the 
governing equations can be expressed by Eq. (1). 
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The response of the system can be described by the 

non-dimensional displacements  and  of the 
geometric center of the rotor mid-span, and the non-
dimensional displacements  and  of the geometric 
center of the journal.  

Dx Dy

Jx Jy
ζ  is half the viscous damping ratio 

on the disc at the rotor mid-span.  , the frequency ratio, 
is the ratio of the linear natural frequency of the magnetic 
bearing system, 

f

nω , to the pin-pin natural frequency of 
the flexible rotor, rω .  U , the unbalance parameter, 
which is a measure of the rotor imbalance, is defined as 
the ratio of the eccentricity of the rotor center of mass 
from its geometric center of rotation, to the nominal air 
gap of the magnetic bearing.  Ω , the speed parameter, is 
the ratio of the rotor operating speed, ω , to the linear 

natural frequency of the magnetic bearing system, nω .  
, the gravity parameter, represents the unidirectional 

static force acting on the disc at the rotor mid-span, and at 
the bearing stations. 

W

γ , the mass ratio, is the ratio of the 
journal mass, , to half-mass of the disc at the rotor 
mid-span, .  

Jm

Dm α  is the geometric coupling parameter, 
which is the ratio of the attractive, on-axis force between 
each magnet and the shaft to the normal, off-axis force.  
P  and  are respectively the non-dimensional 
proportional and derivative feedback gains of the 
controller.  

D

τ  is the non-dimensional time. 
 

3.  Results and Discussion 
 
Numerical integration of Eq. (1) was undertaken using 

the MATLAB software package, which utilizes a 
variable-step continuous solver based on an explicit 
Runge-Kutta (4,5) formula, the Dormand-Prince pair.  
Values of design and operating parameters of U =0.1, 

=0.0, W ζ =0.001, P =1.1, =0.03, D γ =0.2, =1.5 and f
α =0.28 used in the numerical simulation are 
representative of practical rotor-bearing systems.  Ω  was 
varied from 0.05 to 5.0 at intervals of 0.01 in order to 
investigate the effect of increasing the speed parameter on 
the response of the magnetically supported flexible rotor. 

 

 
Fig.1  Bifurcation diagram of the rotor response. 
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The results of the numerical simulation are illustrated 
using bifurcation diagrams, time waveforms, Poincaré 
maps and power spectrum plots.  The time waveform 
represents the instantaneous position of the journal in the 
X -direction plotted against non-dimensional time.  

Poincaré map is obtained by sampling the trajectory of the 
rotor whirl orbit at constant interval of the forcing period 
of Ω= /2πT  and projecting the outcome on the ( )nTxJ  
versus  plane.  The variation of  in the 
Poincaré map with Ω  is then plotted to form the 
bifurcation diagram.  The power spectrum, which exhibits 
the frequency contents of the rotor response at the bearing 
station, is determined from the Fourier transformation of 
the time series of the journal response in the 

( )nTyJ ( )nTxJ

X -direction. 

 

 

 
Fig.2  Rotor response for =0.26. Ω

 
The bifurcation diagram of the rotor response for the 

range , and its enlargement for the range 
, are shown in Fig. 1.  For the range 

, the response of the rotor was 
synchronous, i.e., period-1.  Chaotic motion of the rotor 
was observed in the range , except for 

=0.26 and 0.29, where a sub-synchronous response of 

period-9 was seen, and for =0.27 where the response 
was synchronous.  The time waveform, Poincaré map and 
power spectrum plot of the period-9 response of the rotor 
for 

0.505.0 ≤Ω≤
0.105.0 ≤Ω≤
23.005.0 ≤Ω≤

49.024.0 ≤Ω≤
Ω

Ω

Ω =0.26 are shown in Fig. 2. 
With further increase of Ω , sub-synchronous response 

of period-3 and chaotic vibrations of the rotor were 
observed alternately.  Period-3 response was observed to 
exist in the range 61.050.0 ≤Ω≤ , 70.066.0 ≤Ω≤  and 

94.082.0 ≤Ω≤ .  Chaotic response of the rotor was seen 
in the range 65.062.0 ≤Ω≤  and .  The 
period-3 response of the rotor for Ω =0.55 is shown in 
Fig. 3 using time waveform, Poincaré map and power 
spectrum plot.  The Poincaré map and power spectrum 
plot of the chaotic rotor response for Ω =0.75 are 
illustrated in Fig. 4.  For 

80.071.0 ≤Ω≤

Ω =0.81, sub-synchronous rotor 
response of period-6 is seen to exist. 

 

 

 
Fig.3  Rotor response for =0.55. Ω

 
The response of the rotor was found to be synchronous 

for 64.195.0 ≤Ω≤ , except for a small range 
50.148.1 ≤Ω≤  where quasi-periodic vibrations were 

seen.  For 29.265.1 ≤Ω≤ , the response of the rotor was 
quasi-periodic except for values of  between 2.10 and Ω
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2.19, where chaos was observed.  The Poincaré map and 
power spectrum plot of the quasi-periodic response of the 
rotor for Ω =2.09 are shown in Fig. 5.  For the range 

, the response of the rotor was 
synchronous. 

0.5≤30.2 Ω≤

 

 
Fig.4  Rotor response for =0.75. Ω

 

 

 
Fig.5  Rotor response for =2.09. Ω

4.  Summary 
 
The nonlinear response of a flexible rotor in active 

magnetic bearings has been numerically investigated in 
this work.  Nonlinearity arising from the magnetic 
actuator forces that are nonlinear functions of the coil 
current and the air gap between the rotor and the stator, 
and from the geometric coupling of the magnetic 
actuators were incorporated into the mathematical model 
of the flexible rotor - active magnetic bearing system.  
With the variation of the speed parameter, , the rotor 
response displayed a rich variety of nonlinear dynamical 
behaviour including sub-synchronous vibrations of 
periods-3, -6 and -9, and quasi-periodic and chaotic 
vibrations.  Such vibrations should be avoided in the 
operation of rotating machinery as they introduce cyclic 
stresses, which in turn may rapidly induce fatigue failure 
of the main components of these machines. 

Ω
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