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Abstract—Intrinsic localized mode (ILM) is spatially
localized and temporally periodic oscillation in nonlinear
coupled oscillators. Recently, ILM has been observed in a
micro-cantilever array by Sato ef al. We deal with the dy-
namical properties of ILM in a homogeneous cantilever ar-
ray with fixed boundaries. The coexistence and the stability
of ILMs are investigated. The stability of ILM is changed
with the nonlinear inter-site potential when the nonlinear
on-site potential is fixed. The ILMs can exchange their sta-
bility between stable mode and unstable mode depending
on the nonlinear inter-site potential. The transition is dis-
cussed based on the invariant manifold related to an unsta-
ble ILM. It is clarified that localized oscillations due to a
stable ILM can shift their position via the stability change
of ILM.

1. Introduction

Intrinsic localized mode (ILM) is spatially localized and
temporally periodic solution in a nonlinear coupled oscil-
lators. The localized solution is also called as discrete
breather (DB). Tremendous number of analytical and nu-
merical studies have been reported since the discovery of
ILM by Sievers and Takeno [1]. In this decade, experimen-
tal investigations have been also reported. ILM is generated
and observed in various systems, for instance, Josephson-
junction array [2, 3, 4], optic wave guides [5, 6], micro-
mechanical oscillators [7], and so on. They provide us the
generality of phenomena and the possibility of applications
as a localized exciter. Indeed, the studies toward future ap-
plications are increasing both in fundamental science and
in practical engineering [8].

ILM in a micro-cantilever array was observed by Sato
et al. [7,9]. The micro-cantilever array was fabricated
by microelectromechanical system (MEMS) technology. A
piezo-electric vibrator was attached to substrate of the ar-
ray. The frequency of vibration was chirped enough to ex-
cite ILMs. They observed not only pinned ILMs but also
moving ILMs. The moving ILMs appeared while chirping
the excitation. Some moving ILMs were pinned after the
chirping was stopped. In addition, it was experimentally
confirmed that the position of ILM can be shifted by cre-
ating a local defect [10, 11]. These results directly suggest
that ILM can apply to MEMS applications in practical en-
gineering. For applications, it will be a clue to understand
the mechanism of moving ILM.

Overhang

Cantilevers

Figure 1: Schematic configuration of cantilever array.
Eight homogeneous cantilevers are arranged at equal in-
tervals. Each cantilever is coupled to its neighbors by over-
hang part. Both ends of array are fixed.

The moving ILM is considered as a wave propagation,
phenomenologically. Propagation of a traveling wave was
investigated in a coupled magneto-elastic beam system
[12, 13, 14], in which each short beam oscillates under non-
linear magnetic potential. The long elastic beam connects
these oscillators in one dimension. An external exciter is
linked to one of the ends of oscillators array through cou-
pling beam. The other end is kept free. Many stable and
unstable standing waves coexist in the system. It is shown
that there are heteroclinic connections of stable and unsta-
ble manifolds of unstable standing waves. Propagation of
the traveling wave is governed by the invariant manifolds of
unstable standing waves [14]. The moving ILM also seems
to be governed by invariant manifolds of unstable pinned
ILMs.

This paper examines the stability and the transition of
ILM. The coexistence of ILMs is confirmed and the sta-
bility is investigated in Sec. 3. Invariant manifolds of the
unstable ILM are numerically obtained in Sec. 4. In addi-
tion, the transition of ILM is also discussed with respect to
stability change.

2. Coupled Cantilever Array

A cantilever array considered in this paper is shown in
Fig.1. For simplicity, we deal with the mono-element can-
tilever array. Eight homogeneous cantilevers are equally
spaced in one dimension. The overhang part couples adja-

- 477 -



S

(a ‘ 10t(b
A 1A
> —0—0— —o—C )\')—o—

g5 g
£ g
(73 C o
NV 2
3 &
A-5 A-5

=
=

1234.6789 1 23 4 5 6 7 9
Site Site

Figure 2: Coexisting ILMs in the cantilever array at @ =
0.1, 8; = 0.01, B, = 0.005. (a) Sievers-Takeno (ST) mode
centered on 4th cantilever. (b) Page (P) mode centered be-
tween 4th and 5th cantilevers. Each circle indicates the
position of cantilever tip and each line between circles is
the schematic coupling connection. We applied Newton-
Raphson method to obtain these ILMs, and the 4th-order
Runge-Kutta method to integrate Eq.(1). The accuracy of
the numerical simulation is confirmed through the conser-
vation of Hamiltonian H. Numerical error is kept under
€H. In this paper, H = 250 and € = 1072,

cent cantilevers. Both ends of the array are fixed by the
support. The motion of cantilevers are governed by the
Euler-Bernoulli beam equation when the dumping can be
neglected. The vibration of the tip of cantilever is described
by the coupled non-dimensional ordinary differential equa-
tions as follows:

3
—u,‘—ﬁﬂdi
—a (u; — ui—1) — @ (u; — uiy1)

—Bo i — ui1)? = Ba (u; — uis1)? (D
iefl,2,...,8},

i =

where u; denotes the displacement of the tip of i-th can-
tilever from equilibrium position. « depicts the ratio in
quadratic potentials. The quartic potential coefficients are
represented by 8; and 8,. 81 denotes the on-site one and it
is set at 0.01 through this paper. The boundary conditions
are set for given fixed-ends; uy = ug = 0, 119 = itg = 0. The
Hamiltonian

# 5 =) + B2 - w'h @

gives the total energy of the cantilever array. The array
keeps the energy given by the initial condition during the
temporal development.

3. Coexistence and Stability of ILM

Several ILMs coexist in the coupled cantilever array at
the total energy H = 250. Two of the ILMs are shown
in Fig.2. They are obtained by Newton-Raphson method
with appropriate initial conditions. In general, coexist-
ing ILMs are roughly classified into two kinds, “Sievers-
Takeno mode (ST-mode)” and “Page mode (P-mode)” [15].
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Figure 3: Floquet multipliers A in complex plane for P3-
4. In left panel (a), all Floquet multipliers are represented.
Near +1 in complex plane is shown in right panel (b). Dot-
ted line corresponds to unit circle. Circle and square indi-
cate Floquet multipliers for P3-4 at 8, = 5.452 x 1073 and
By = 5.455 x 1073, respectively. Since a Floquet multiplier
is outside unit circle, P3-4 is unstable at 8, = 5.452 x 1073,
In contrast, P3-4 is stable when (3, increases slightly. All
Floquet multipliers are on unit circle.

The ST-mode shown in Fig.2 has symmetric amplitude dis-
tribution in space and it is centered on a site. It was found
analytically by Sievers and Takeno [1]. On the other hand,
the P-mode, which was analytically derived in 1990 [16],
is spatially antisymmetric and centered between sites. In
the cantilever array, both ST- and P-modes can coexist at
every site except near edges. Here we distinguish them by
index number of cantilever at which the center of each ILM
stands. For example, ST4 implies the ST-mode centered on
the 4th cantilever and P4-5 implies the P-mode centered
between the 4th and the 5th cantilevers.

As for the confirmation of the stability of ILMs, Floquet
theory plays a main role [17]. ILM becomes unstable when
one of the Floquet multipliers at least exists outside unit
circle in complex plane. ILM is determined as marginally
stable in the case that all Floquet multipliers are on the unit
circle. Fig. 3 shows Floquet multipliers for P3-4 in two
cases. The case of 8, = 5.452 x 1073 is represented by cir-
cles. Fig. 3(b) clearly shows that P3-4 is unstable. On the
other hand, P3-4 becomes stable when 8, = 5.455 X 1073,
All Floquet multipliers are on unit circle, which are indi-
cated by squares in Fig.3. The stability of another coexist-
ing P-modes near center of the array is also different be-
tween 8, = 5.452 x 1073 and 5.455 x 1073. Thus the stabil-
ity of P-modes is changed by varying 3, without significant
change of the period and the amplitude distribution. For co-
existing ST-modes, the stability change also occurs but the
stability of ST-modes is opposite to P-modes. It suggests
that the stability of ILMs is substantially affected by 3.

4. ILM Transition via Stability Change

Based on results in the coupled magneto-elastic beam
system [14], dynamics of moving ILM in the cantilever ar-
ray is governed by invariant manifold of unstable ILMs. In
this paper, the unstable manifold of P3-4 is focused on. The
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P3-4 is unstable when 3, = 5.452 x 103. One of Floquet
multipliers is outside unit circle in complex plane as shown
in Fig.3(b). Thus P3-4 has one dimensional unstable man-
ifold. Since another Floquet multiplier is inside unit circle,
P3-4 also has one dimensional stable manifold.

A nonlinear map ¥ is defined on a hyper plane X, to
obtain the unstable manifold of ILM. The hyper plane is
defined as follows,

24={(u1,...,u8,u1,...,u8)eR“”|u4>0,u4:0}. (3)

As a result, the coexisting ILMs are represented as fixed
points under the map ¥ : X4 — Z4. The unstable mani-
fold of P3-4 projected onto a subspace of X4 is shown in
Fig.4. Solid curve corresponds to the unstable manifold
W3,_, from P3-4. Coexisting ST-modes and P-modes are
indicated by circles and squares. The unstable manifold
of right side in Fig.4 extends to P5-6 and returns back to
P3-4 again. The unstable manifold passes near P4-5 and
P5-6 and takes a long way around ST4 and STS5. The fact
suggests that a localized oscillation generated from a ini-
tial condition near P3-4 can move to near P4-5 and P5-6
[14]. However, the localized oscillation cannot reach near
any ST-modes. It allows us to expect that a localized oscil-
lation near stable ST-modes stays there for a long period.
Hence the moving localized oscillation will stop near P4-5
or P5-6 which are stabilized by slightly increasing 5.

The energy distribution in the cantilever array is defined
so as to discuss moving localized oscillation as follows,

—_ EC(L l) (S = l.),
E(s,t) = { Eolin (s—i-1), @
1.3 17
= 1, =, 2, .8, — %,
se {2 : }
1 1
Eclin) = 5”?+§u,-2+%uf,
. a
Eo(i,t) = E(ui_“i—l)2+%(ui—ui—])4.

Here, s depicts coordinate in space. Ec(i,t) denotes the
sum of kinetic energy and potential energy of i-th cantilever
tip. Potential energy of the overhang part between i-th and
(i — 1)-th cantilevers is represented as Eo(i, f).

Numerical simulation of catch and release manipulation
for localized oscillation is shown in Fig.5. At first, 8, was
set at 5.455 x 1073, Initial condition was chosen near sta-
ble P3-4. During 0 < ¢ < #;, 3 is kept at 5.455 x 1073.
The energy distribution, which has a peak between 3rd and
4th cantilevers, implies that the localized oscillation stands
at P3-4. For #; < t < 1, B, decreases to 5.452 X 1073.
Then P-modes lose the stability. As a result, the local-
ized oscillation begins to leave P3-4. It quickly shifts to
P4-5 through ST3 around ¢ = 2700 and stays near P4-5
for a while. Then the transition occurs again and the lo-
calized oscillation reaches near P5-6. Here 3, returns to
5.455 x 1073 for 13 < t < t4 and keeps its value during
t > t4. Since the P-modes are stabilized, the localized os-
cillation is caught near P5-6. Rigorously, it wanders around

Figure 4: Unstable invariant manifold of P3-4 and some co-
existing ILMs. They are on a hyper plane X4. Solid-curve
corresponds to unstable invariant manifold Wg,_,. Circle
and square indicate stable and unstable ILMs, respectively.
Projection to (u3, &13) plane is also drawn with dotted-curve
and small points. Unstable manifold of right side extends
to P5-6 and returns to P3-4 again. The opposite side one

lies around ST3.

the stable P5-6. However it did not shift to another site be-
yond unstable ST-modes through the long time simulation.
Consequently, it is shown that the localized oscillation can
be moved from P3-4 to P5-6 by slightly varying §,. In ad-
dition, the localization of energy distribution is held under
the manipulation.

5. Concluding Remarks

In this paper, the stability and the transition of ILM in the
cantilever array has been discussed based on the results of
traveling waves in coupled magneto-elastic beam system.
First, coexistence of ILMs was confirmed and the stability
was investigated. ST-modes and P-modes coexist at every
site except near the edges of the cantilever array. Their
stability is changed by small change of the coefficient of
nonlinear inter-site potential.

Second, an unstable manifold of P-mode was obtained
and the phase structure was discussed. The unstable man-
ifold passes by P-modes and takes a long way around ST-
modes.

Finally, it was shown that the localized oscillation can
be shifted to another site by appropriate modification of the
nonlinear inter-site potential. The localized oscillation gen-
erated near a stable ILM begins to move when the ILM be-
comes unstable. The localization of energy distribution in
space is kept while the oscillation moves. The moving lo-
calized oscillation is caught by the stable ILM. It should be
noted that the place where the moving localized oscillation
temporarily stay is decided by the structure of the invari-
ant manifolds of unstable ILMs. The localized oscillation
generated near a P-mode will not shift to any ST-modes.
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Figure 5: Transition of ILM via stability change. (a) Varia-
tion of 3, with respect to time. 3, decreases monotonously
from 5.455 x 1073 to 5.452 x 1073 for t; < t < t,. B, be-
gins to return at ¢ = f3, It keeps 5.455 x 1072 after ¢ = 1.
(b) Energy distribution. Tone is related to energy density.
Thus the most dark region corresponds to center of local-
ized oscillation. At first, the oscillation stands between 3rd
and 4th sites. It begins to move when P3-4 becomes un-
stable. Finally, the localized oscillation is stopped between
5th and 6th sites according to the stability of P3-4 changes
again. As a result, the position of the localized oscillation
is shifted from P3-4 to P5-6.
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