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Abstract—We have already proposed a method to eval-
uate the influence of dynamical noise on chaotic systems
[1]. It was demonstrated that the influence of dynamical
noise on a typical chaotic system Chua’s electronic cir-
cuit can be extracted by the temporal fluctuation of singu-
lar values (TFSV) obtained from singular value decompo-
sition (SVD), independently of the presence of measure-
ment noise. In this study, further investigation related to
this method is performed regarding the influence of data
length and embedding. As a result, it is found that an ade-
quate data length can be determined by using a new index
S and the characteristics in the both cases with embedding
and without embedding are shown.

1. Introduction

Every physical system is subject to noise in the real
world. In general, there are two types of noise in any
physical system, namely, measurement noise and dynam-
ical noise. Different from the former, the latter type of
noise is said to be realistically intrinsic to a physical sys-
tem and yields an extremely complicated mechanism ac-
companied by feedback. As a result, it is quite difficult to
analyze both on the theoretical and experimental levels. On
the other hand, since a chaos system displays particularly
strong nonlinearity and sensitivity to its initial condition,
dynamical noise may have a remarkable and fatal influence
on a chaos system. Numerous studies concerning dynam-
ical noise in chaos have appeared, such as estimation of
noise levels [2], stabilization of the system such as stochas-
tic resonance [3], vibrational resonance [4], coherence res-
onance [5, 6], and noise-induced stabilization [7, 8].

We have already proposed a method to evaluate the in-
fluence of dynamical noise on chaotic systems [1]. It
was demonstrated that the influence of dynamical noise
on a typical chaotic system Chua’s electronic circuit can
be extracted by the temporal fluctuation of singular val-
ues (TFSV) obtained from singular value decomposition
(SVD), independently of the presence of measurement
noise. In this study, further investigation related to this
method is performed regarding the influence of data length
and embedding.

2. Proposed Method

2.1. Noise

Generally, dynamical noise and measurement noise are
defined for a flow system, respectively, as follows:

ẋ = f(x, ξ(D)), (1)

y = g(x) + ξ(M), (2)

wherex andy are, respectively, the underlying state vec-
tor and the observed one;f is a governing function of the
system;g is an observation function; andξ(D) andξ(M) are
dynamical and measurement noise, respectively.

2.2. Temporal Fluctuation of Singular Values (TFSV)

SVD is the operation to diagonalize the singular ma-
trix. Now, if the N×n rectangular matrixX is diagonal-
ized, the covariance matrixXtX can be decomposed into
XtX = VΣ2Vt, whereΣ2 is the n×n diagonal matrix and
V and Vt are then×n orthogonal matrix and the trans-
posed matrix ofV, respectively. Here,VVt

= VtV =
In is satisfied using then×n unit matrix In. As Σ2

=

diag(σ2(1),σ2(2),. . .,σ2(n)) is obtained, we can extract sin-
gular values (SVs) {σ(i)|i = 1,2,. . .,n}, which are non-zero.
The relatively larger SVs correspond to the principal or-
thogonal basis of the deterministic system. In general, mea-
sured data is frequently obtained as a scalar time series.
The procedure of SVD for such data is explained. Now,
a (n, J)-window:{vi ,vi+J,. . .,vi+(n−1)J} is prepared, wheren
is the number of elements of the window andJ is a sam-
ple time in applying the method of delays as described
in Ref.[9]. Here, a finite measured time series{vi∈R|i =
1,2,. . .,N+n−1} is transformed into theN×n(N�n) matrix
X and then×n covariance matrixXtX can be obtained.

2.3. In the presence of Measurement Noise

In the presence of measurement noise, each SV uni-
formly increases, since the underlying state vectors and the
noise are uncorrelated, as explained in Ref.[9]. Namely,
the covariance matrixXtX has a quite simple structure that
is almost diagonal, where all diagonal values are larger by
the same amount than those of a noiseless case. If the sys-
tem remains steady, such diagonal values are expected to
be nearly constant independent of the passage of time.
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2.4. In the presence of Dynamical Noise

On the other hand, in the presence of dynamical noise,
the result is utterly different from the case of measurement
noise andXtX loses its simple structure. Since the un-
derlying state vectors and dynamical noise are correlated,
the dynamical noise complicatedly affects both each diag-
onal component and each off-diagonal component. The
operation of SVD is to reduce the values of all of off-
diagonal components by means of a similarity transforma-
tion of the orthogonal matrix. Accordingly, in the process
of SVD, the complexity of the components spreads on di-
agonal components and, therefore, each value of diagonal
components complicatedly changes. Moreover, since the
statistical properties of both components depend upon the
time series data, from whichXtX is built, SVs temporally
fluctuate for consecutive time series. Thus, the influence of
dynamical noise on chaos can be extracted with a different
form from that of measurement noise. This result means
that the influences of dynamical noise and measurement
noise can be distinguished even in the case of the noise-
mixed data composed of both noises. The concrete way of
extracting TFSV is explained next.

2.5. Performance Index S

In practice, TFSV can be estimated as follows (see
Fig.1). First, temporally consecutive time series data sets
are prepared. Each of sets is called an “interval” {Ik|k
= 1,2,. . .,Nint} in this paper. In eachIk, N elements are
included such as{vN(k−1),vN(k−1)+1,. . .,vN(k−1)+N}. Second,
SVs {σk(i)|i = 1,2,. . .,n} are calculated in eachIk, wherei
is an “Index” of SVs lined in descending order. Third, each
standard deviationS(i) of SVs over allinterval is calcu-
lated everyith Index. At last, as an averagedS(i), Sav is
obtained as concrete expression of TFSV, as follows.

S(i) =

√

∑Nint

k=1 (σk(i) − σ(i))2

Nint
, (3)

Sav =

∑n
i=1 S(i)

n
, (4)

whereσ(i) is the averages ofσk(i) for all Index atith Index
andS(i), Sav ∈ [0,∞].

In the previous work, we introduced an original per-
formance index: correlation coefficient C. While, in this
study, the new indexS is induced instead ofC. The new
index can bring us some advantages regarding normaliza-
tion of data length, comprehensibility, and so on. AsC has
been already normalized by variance of data to the range
of [-1,1], therefore, there is no reasonable way for further
normalization. Moreover,C has a difficult concept to un-
derstand the meaning compared withS.
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… …
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Figure 1: The concept of the extraction of TFSV. Tempo-
rally consecutive time series data sets are prepared. Each
of sets is called an “interval” {Ik|k = 1,2,. . .,Nint}. N ele-
ments;{vN(k−1),vN(k−1)+1,. . .,vN(k−1)+N} are included in each
Ik. Meanwhile, each performance indexS(i) of SVs over
all interval is calculated for everyith Index. TFSV can be
estimated by the averageSav as a proxy ofS(i).

3. Numerical Analysis

3.1. Preparation

Chua’s electronic circuit is used as a typical chaos sys-
tem, which is described by the 3-dimensional ordinary dif-
ferential equations that follow [10],

C1
dVC1

dt
=

1
R

(VC2 − VC1 ) − fNR(VC1), (5)

C2
dVC2

dt
=

1
R

(VC1 − VC2 ) + iL, (6)

L
diL
dt

= −VC2 , (7)

where fNR(VC1) = GbVC1 +
1
2(Ga - Gb)|VC1 + Bp| - |VC1 -

Bp|. VC1 , VC2 andiL indicate voltage of two capacitorsC1,
C2 and the current of coilL, respectively.fNR(VC1) denotes
the 3-segment odd-symmetric voltage-current characteris-
tic of the nonlinear resistorNR, by which the system ex-
hibits a large variety of typical chaotic behaviors. Thei.i.d.
dynamical noiseξ with a 0 mean is added toVC1 such as
VC1→VC1 + ξ as additive noise. In this work values of pa-
rameters giving rise to double-scroll chaos are selected as
follows, C1 = 10 nF, C2 = 100 nF, L = 18 mH, 1/R =
0.55 1/Ω, Ga = −0.758 mA/V, Gb = −0.409 mA/V, and
Bp = 1.17 V. Here, the analyses are performed for the
scalar time series ofVC1. In this study, 4 kinds of time
series are prepared, these being noise-free data (NF−data),
measurement noise data (M−data), dynamical noise data
(D−data), and noise-mixed data composed of both dynam-
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ical noise and measurement noise (DM−data). Each noise
level is given as a ratio of a standard deviation of noise
data to that of the time seriesVC1 in NF data. The range
of the noise amplitude is 0.01%-20.0% for M−data and
0.01%-3.7% forD−data, where 3.7% is the maximum, be-
low which a chaotic state can be retained. ForDM−data,
measurement noise with a 20.0% noise level is added to all
D−data. The4th-order Runge-Kutta methodis used with
a constant time stepτs = 0.000005. The number of ele-
mentsN in each interval and the number of intervalsNint

are 100,000 and 10,000, respectively. SVD is performed
for all intervals to extract TFSV. However, ahead of SVD,
an adequate (n,J) window should be determined, satisfying
the window lengthτw = nτL = nJτs, where the lag timeτL

is expressed asτL = Jτs. In particular, the most important
parameter isτw. Though the detail is not presented here,
in this case,τw = 60τs can be determined by considering
the band-limiting frequency in FFT analysis as explained
in [9]. However, there are some difficulties in deciding the
properties of the adequate window. Here, the result should
satisfynJ = 60. In this paper, SVD is undertaken for the
two cases: (n,J) = (4,15) and (3,20).

3.2. Results of TFSV

Figure 2 shows results of TFSV for the 4 representatives.
In (a) the results of a performance indexCav are illustrated
in the previous work for comparison with the new index
Sav. While, in (b) those of the new indexSav are shown. In
both cases, a window condition (4,15) is adopted for em-
bedding. From figure 2, quite similar tendencies between
the results ofCav andSav can be seen, though the direction
of the increase of TFSV is opposite. Accordingly, it can be
said thatSav is effective for extraction of TFSV.

4. Estimation of Data Length N in each Interval

The influence of the data length in eachinterval on Sav

is estimated. The estimation is carried out by using normal-
ized Sav, that is,Sav, which is normalized by multiplying√

N, whereN is the number of data points in eachinterval.
The result can be shown in figure 3. The data length from
1,000 to 100,000 are used for this estimation. According
to figure 3, as the data length increases, the curve ofSav

converges in the data length more than 30,000 points ap-
proximately. It can be said that the data length 100,000,
which is used in this study, is statistically sufficient.

5. Estimation of Embedding

The influence of embedding is recognized here. We pre-
pare two cases; the embedding case and the no-embedding
one. In the embedding case, the window condition (n,J) =
(3,20) is adopted. Therefore, a set{vi ,vi+20,vi+2∗20} for ith
row components of the matrixX is used and TFSV is cal-
culated. On the other hand, in the no-embedding case, a
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Figure 2: Results of TFSV for the 4 representatives. In
(a) the results of a performance indexCav are illustrated
in the previous work. In (b) those of the new indexSav

are shown. In both cases, a window condition (4,15) is
adopted for embedding. Both results indicate quite similar
tendencies each other, though the direction of the increase
of TFSV is opposite.

set composed of threeith variables{Vc1i ,Vc2i ,iL i} for ith
row ones is directly used forX. Figure 4 shows the results.
The results of the both cases are compared for each case of
Sav, S(1), S(2), andS(3), respectively. InSav, regarding
the influence of dynamical noise, the range of the valuesS
in the embedding case is larger than in the no-embedding
one. This means that the analysis in the embedding case
can much more sensitively extract the influence of dynam-
ical noise than that in the no-embedding one. Besides, in
the embedding case, the influence of measurement noise
can be avoided more effectively than in the no-embedding
case, because uncorrelated signals of measurement noise
can be canceled in the course of SVD in the embedding
case differently from the no-embedding one.

6. Conclusions

Further investigation related to the proposed method is
performed. The new performance indexS is induced.
Some advantages are obtained and, in particular, the analy-
sis of the influence of data length becomes possible through
normalization. As the results, it is found out that the data
length 100,000 in eachinterval adopted in our analysis is
statistically sufficient. In the estimate of embedding, the
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Figure 3: Influence of the data length in eachinterval. Sav

is normalized by multiplying
√

N, whereN is the number
of data points in eachinterval. As data length increases,
the curve ofSav converges.

characteristic concerning dynamical noise and measure-
ment one are indicated, respectively.
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