
Investigation of Asymmetrically Coupled Chaotic Circuits
and Chaotic Maps

Yukari Kowatari, † Yasuteru Hosokawa,† and Yoshifumi Nishio‡

†Dept. of Information Science, Shikoku University
Furukawa, Ojin-cho, Tokushima, 771-1192 JAPAN

‡Dept. of Electrical and Electronic Engineering, Tokushima University
2-1 Minami-Josanjima, Tokushima, 770-8506 JAPAN

Email: s1839028@keiei.shikoku-u.ac.jp, hosokawa@keiei.shikoku-u.ac.jp, nishio@ee.tokushima-u.ac.jp

Abstract—In our previous study, we observed interest-
ing phenomena in asymmetrically coupled chaotic circuits.
Namely, the ratio of synchronization time of the one sub-
system group increases in spite of increasing parameter
mismatches in the other subsystem. In this study, we inves-
tigate the observed phenomena from asymmetrically cou-
pled chaotic circuits and asymmetrically coupled chaotic
maps.

1. Introduction

Coupled chaotic systems generate various kinds of
complex higher-dimensional phenomena such as spatio-
temporal chaotic phenomena, clustering phenomena and so
on. One of the most studied systems may be the coupled
map lattice proposed by Kaneko [1]. The advantage of the
coupled map lattice is its simplicity. However, many of
nonlinear phenomena generated in nature would be not so
simple. Therefore, it is also important to compare with the
complex phenomena observed in natural physical systems
such as electrical circuits systems [2]-[6]. One of useful
tools for investigating these phenomena is electrical cir-
cuits. There are many advantages of using electrical cir-
cuits. For instance, circuits are natural physical systems,
circuit elements are low price and high quality, circuit ex-
periments are easy to match theory, and so on.

In our previous study [7][8], some kinds of asymmetri-
cally coupled chaotic systems are investigated. Especially,
we paid our attentions to the relationships between syn-
chronization phenomena and small parameter mismatches.
In all the systems, the same interesting phenomenon is
observed. The phenomenon is that the ratio of the syn-
chronization time increases in spite of increasing parameter
mismatches in the other system.

In this study, in order to investigate these phenomena,
asymmetrical coupled chaotic maps are investigated. The
logistic map is used as a chaotic map. Asymmetry of the
system is realized by using two parameter values. We pay
our attentions to the relationship between the ratio of syn-
chronization time and parameter mismatches.

Figure 1: Asymmetrically coupled system.

2. Asymmetrically Coupled System

Asymmetrically coupled system is shown in Fig. 1. This
system consists of two kinds of subsystems and coupling
elements. Subsystems are coupled globally. An asymmetry
of the system is realized by using two kinds of subsystems.
Some kinds of chaotic circuits or autonomous oscillators
were applied as subsystems in our previous studies. For in-
stance, two different coupling points of one chaotic circuit,
two different parameters of one chaotic circuit, chaotic cir-
cuits and van der Pol oscillators and so on. In this study,
the logistic map is applied as subsystems. The asymme-
try is realized by using two parameter values. This sys-
tem is based on globally coupled map (GCM) proposed by
Kaneko [9]. GCM is described by the following equation.

xn+1(i) = (1 − ε) f (xn(i)) +
ε

N

N∑
j=1

f (xn( j)) (1)

where n is a discrete time step and i is the index of the
elements. f (x) is the function of the chaotic map.

In this study, the logistic map f (x) = 1 − ax2 is chosen.
The asymmetry of the system is realized by using two pa-
rameter values. Therefore, the function f (x) is shown as
follows.
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Figure 2: Chaotic Circuit.

Subsystem A ( 1 ≤ i ≤ p):

fA(xn(i)) = 1 − (1 + Qai)a1xn(i)2 (2)

Subsystem B ( p + 1 ≤ k ≤ p + q):

fB(xn(i)) = 1 − {1 + Qb(i − p)}a2xn(i)2 (3)

where i is the index number of the maps. n is the number of
iterations. a1 and a2 are the parameter of the logistic map.
p and q are the numbers of the elements in the subsystems
A and B, respectively. Qa and Qb are parameter mismatch
rates of the two subsystems.

3. Computer Simulations

3.1. Electrical Circuits

First, we introduce the results observed from the system
using chaotic circuits. The applied chaotic circuit is shown
in Fig. 2. This chaotic circuit is a simple three-dimensional
autonomous circuit proposed by Shinriki et al. [10]. A-
node is used as a coupling node. An asymmetry of the
system is realized as a difference of parameters. Namely,
parameters of subsystem A is different from subsystem B.
Double scroll type attractors are observed from both of the
subsystems. Normalized circuit equations are described as
follows:
Subsystem A (1 ≤ k ≤ m):



ẋk = αβxk − αγ f (xk − yk)

+αδ

m+n∑
i=1

xi − (m + n)xk

 ,
ẏk = −zk + γ f (xk − yk),

żk = (1 + pk)yk,

(4)

Subsystem B (m + 1 ≤ k ≤ m + n):

ẋk = εβxk − εγ f (xk − yk)

+εδ

m+n∑
i=1

xi − (m + n)xk

 ,
ẏk = ζ {−zk + γ f (xk − yk)} ,

żk = η(1 + qk)yk,

(5)

where,

f (x) = x +
(|x − 1| − |x + 1|)

2
.

Figure 3 shows the voltage differences between the sub-
systems. Vertical axes show voltage differences and hor-
izontal axes show time. Namely, in the case of synchro-
nizing two subcircuits, the amplitude becomes zero. First
graph shows the voltage difference between the two sub-
system A. Synchronizations and un-synchronized burst ap-
pear alternately in a random way. The second graph shows
the voltage difference between subsystem A and subsystem
B. These are not synchronized at all. The third and fourth
graphs show the voltage differences between two subsys-
tem B. Here we define the synchronization as following
equation and figure.

x1 − x2

x2 − x3

x3 − x4

x4 − x5

Figure 3: Voltage differences between two subsystems in
the case of chaotic circuit.

synchronization

Figure 4: Definition of the synchronization.

|xk − xk+1| < 0.01 (6)

Figure 5 shows ratios of the synchronization time and total
time. Q is shown as following equation.

qk = Q(k − 1) (7)

Q is corresponding to small parameter mismatches qk of
subsystem B group. By increasing small parameter mis-
match of subsystem B group, the synchronization time of
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Figure 5: Relationship of the ratio of the synchronization
time and small parameter mismatches in the case of System
2. m = 2, n = 3, pk = 0.001(k− 1), α = 0.600, β = 0.500,
γ = 20.0, δ = 0.070, ε = 0.6, ζ = 1.5 and η = 0.5.

(a) xn(1) vs. xn+1(1) (b) xn(3) vs. xn+1(3)

Figure 6: Maps of (a) subsystem A and (b) subsystem B.
p = 2, q = 3, Qa = 0.050, a1 = 1.70, a2 = 1.98 and
ε = 0.40.

subsystem A group is increased. Namely, in spite of in-
creasing small parameter mismatches of the system, the
synchronization time of subsystem A group is increased.

3.2. Chaotic Maps

We carry out computer simulations using Eq. (2) and
Eq. (3). Here we define the synchronization as the follow-
ing conditional equation:

(|xn−1(i)−xn−1(i+1)| < 0.05)∩(|xn(i)−xn(i+1)| < 0.05) (8)

This equation shows that two consecutive closer values
than a given threshold value (0.05) define synchronization.

Figures 6 and 7 are examples of the computer simula-
tion results. In Fig. 6, the horizontal axes show xn(i) and
the vertical axes show xn+1(i). Figure 6(a) shows x1 and
Fig. 6(b) shows x3. We can see the difference between the
two maps. In Fig. 7, the horizontal axes show iterations
and the vertical axes show the values of xk − xk+1. From
these results, we can see that subsystem A and subsystem
B are not synchronized at all and increasing Qb causes in-
creasing a ratio of synchronization time of subsystem A.
Figure 8 is corresponding to Fig. 5. We can also see the
similar result as Fig. 5. The chaotic circuit is continuous-

x1 − x2

x2 − x3

x3 − x4

x4 − x5

(a) Qb = 0.002

x1 − x2

x2 − x3

x3 − x4

x4 − x5

(b) Qb = 0.020

x1 − x2

x2 − x3

x3 − x4

x4 − x5

(c) Qb = 0.040

Figure 7: Variable differences between two subsystems.
p = 2, q = 3, Qa = 0.050, a1 = 1.70, a2 = 1.98 and
ε = 0.40.

time system. The logistic map is discrete-time system. In
spite of this difference, we can observe the phenomena in
both systems. Therefore, we consider that the phenomena
are closely related to the structure of the system.

Next, we investigate the case of thirty maps. Figure 9
shows the relationship of the ratio of the synchronization
time and small parameter mismatches. In this case, we can
also the same phenomena. Figure 10 shows the relationship
of the ratio of the synchronization time and the number of
the maps in A group. This result shows that increasing rate
of A group decrease the ratio of the synchronization time
of A group.

4. Conclusions

In this study, asymmetrically coupled chaotic maps are
proposed and investigated. Asymmetry of the system is re-
alized by using two parameter values. In the case of five
maps, it was confirmed that ratios of synchronization time
of maps using one parameter set are increased by increas-
ing a parameter mismatch rate of the other maps group.
We consider that this result is corresponding to the result
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Figure 8: Relationship of the ratio of the synchronization
time and small parameter mismatches. p = 2, q = 3,
Qa = 0.050, a1 = 1.70, a2 = 1.98 and ε = 0.40. The
number of iteration is 1000000.

Figure 9: Relationship between the ratio of the synchro-
nization time and small parameter mismatches. p = 10,
q = 20, Qa = 0.002, a1 = 1.70, a2 = 1.95 and ε = 0.45.
The number of iteration is 1000000.

Figure 10: Relationship of the ratio of the synchroniza-
tion time and small parameter mismatches. The number of
maps is 30. Qa = 0.020, Qb = 0.002, a1 = 1.70, a2 = 1.95
and ε = 0.45. The number of iteration is 1000000.

of our previous study. We also investigated the case of
thirty maps. In this case, we observed that increasing rate
of A group decrease the ratio of the synchronization time
of A group. Investigating this phenomenon is our future
research.
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